mb event system 4 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def if b t else f fi == InjCase(b ; tf)

is mentioned by

Thm* eq:EqDecider(A), x,y:Av,z:Top.
Thm* x : v(y)?z ~ if eqof(eq)(x,y) v else z fi
[fpf-cap-single]
Thm* eq:EqDecider(A), f:a:A fp-> Top, g:Top, x:A.
Thm* f  g(x) ~ if x  dom(f) f(x) else g(x) fi
[fpf-join-ap-sq]
Def M.send(k;l;s;v;ms;i)
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> ms
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> =
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if source(l) = i
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if concat(map(tgf.
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if map(x.
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;2of(tgf)
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;(s
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;,v));L))
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> else nil fi
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (tg:Id
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (if source(l) = i
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (if M.da(rcv(ltg))
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (else Top fi) List
[ma-send]

In prior sections: bool 1 mb nat mb list 2 mb event system 1 int 2 list 1 mb list 1 num thy 1 mb event system 2 mb event system 3

Try larger context: EventSystems IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

mb event system 4 Sections EventSystems Doc