is mentioned by
Def == Def == & Def == & Def == & Def == & Def == ef=1of(2of(2of(2of(2of(M)))))(kx) Def == & Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl) Def == & (tg | [ma-feasible] |
Def (init: init Def action a:T Def aprecondition a(v) is Def aP) Def == mk-ma(ds; locl(a) : T; init; a : P; ; ; ; ) | [ma-single-pre-init] |
Def (action a:T Def (precondition a(v) is Def (P s v) Def == mk-ma(ds; locl(a) : T; ; a : P; ; ; ; ) | [ma-single-pre] |
Def == M1 ||decl M2 Def == & 1of(2of(2of(M1))) || 1of(2of(2of(M2))) Def == & 1of(2of(2of(2of(M1)))) || 1of(2of(2of(2of(M2)))) Def == & 1of(2of(2of(2of(2of(M1))))) || 1of(2of(2of(2of(2of(M2))))) Def == & 1of(2of(2of(2of(2of(2of(M1)))))) || 1of(2of(2of(2of(2of(2of(M2)))))) Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(2of(2of(2of(2of(2of(2of( Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(M2))))))) Def == & 1of(2of(2of(2of(2of(2of(2of(2of( Def == & 1of(M1)))))))) || 1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))) | [ma-compatible] |
Def == 1of(M1) Def == & 1of(2of(2of(M1))) Def == & & 1of(2of(2of(2of(M1)))) Def == & & 1of(2of(2of(2of(2of(M1))))) Def == & & 1of(2of(2of(2of(2of(2of(M1)))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(2of( Def == & & 1of(M1)))))))) | [ma-sub] |
Def == P != 1of(2of(2of(2of(M))))(a) ==> | [ma-npre] |
| [ma-decla] | |
Def == ds:x:Id fp-> Type Def == Def == Def == kx:Knd Def == kl:Knd Def == kl:Knd Def == kl:Knd Def == | [msga] |
In prior sections: mb event system 1 mb event system 3
Try larger context:
EventSystems
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html