mb event system 4 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Def Top == Void given Void

is mentioned by

Thm* A:Type, eq:EqDecider(A), f:a:A fp-> Top.
Thm* fpf-dom-list(f {a:Aa  dom(f) } List
[fpf-dom-list_wf]
Thm* eq:EqDecider(A), B:Top, f:a:A fp-> Top.  || f[fpf-empty-compatible-left]
Thm* eq:EqDecider(A), B:Top, f:a:A fp-> Top. f || [fpf-empty-compatible-right]
Thm* eq:EqDecider(A), x,y:Av:Top. x  dom(y : v) ~ (eqof(eq)(y,x))[fpf-single-dom-sq]
Thm* eq:EqDecider(A), x,y:Av:Top. x  dom(y : v x = y[fpf-single-dom]
Thm* eq:EqDecider(A), x:Av,P:Top. z != x : v(x) ==> P(a,z) ~ (True  P(x,v))[fpf-val-single1]
Thm* eq:EqDecider(A), x,y:Av,z:Top.
Thm* x : v(y)?z ~ if eqof(eq)(x,y) v else z fi
[fpf-cap-single]
Thm* eq,x,v:Top. x : v(x) ~ v[fpf-ap-single]
Thm* eq:EqDecider(A), x:Av,z:Top. x : v(x)?z ~ v[fpf-cap-single1]
Thm* eq:EqDecider(A), f:a:A fp-> Top, g:Top, x:A.
Thm* f  g(x) ~ if x  dom(f) f(x) else g(x) fi
[fpf-join-ap-sq]
Thm* eq:EqDecider(A), f,g:x:A fp-> Top.
Thm* fpf-is-empty(f  g) ~ (fpf-is-empty(f)fpf-is-empty(g))
[fpf-join-is-empty]
Thm* eq:EqDecider(A), f,g:a:A fp-> Top, x:A.
Thm* x  dom(f  g x  dom(f x  dom(g)
[fpf-join-dom2]
Def MsgAForm
Def == x:Id fp-> Topx:Knd fp-> Typex:Id fp-> Topx:Id fp-> Top
Def == x:KndId fp-> Topx:KndIdLnk fp-> Topx:Id fp-> Topx:IdLnkId fp-> Top
Def == Top
[msg-form]
Def Feasible(M)
Def == xdom(1of(M)). T=1of(M)(x  T
Def == kdom(1of(2of(M))). T=1of(2of(M))(k  Dec(T)
Def == adom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a 
Def == &s:State(1of(M)). Dec(v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == kxdom(1of(2of(2of(2of(2of(M)))))). 
Def == ef=1of(2of(2of(2of(2of(M)))))(kx  M.frame(1of(kx) affects 2of(kx))
Def == kldom(1of(2of(2of(2of(2of(2of(M))))))). 
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl  tg:Id. 
Def == & (tg  map(p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>)
[ma-feasible]
Def M1 || M2
Def == M1 ||decl M2
Def == & 1of(2of(2of(M1))) || 1of(2of(2of(M2)))
Def == & 1of(2of(2of(2of(M1)))) || 1of(2of(2of(2of(M2))))
Def == & 1of(2of(2of(2of(2of(M1))))) || 1of(2of(2of(2of(2of(M2)))))
Def == & 1of(2of(2of(2of(2of(2of(M1)))))) || 1of(2of(2of(2of(2of(2of(M2))))))
Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(2of(2of(2of(2of(2of(2of(
Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(M2)))))))
Def == & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & 1of(M1)))))))) || 1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))
[ma-compatible]
Def M1  M2
Def == 1of(M1 1of(M2) & 1of(2of(M1))  1of(2of(M2))
Def == & 1of(2of(2of(M1)))  1of(2of(2of(M2)))
Def == & & 1of(2of(2of(2of(M1))))  1of(2of(2of(2of(M2))))
Def == & & 1of(2of(2of(2of(2of(M1)))))  1of(2of(2of(2of(2of(M2)))))
Def == & & 1of(2of(2of(2of(2of(2of(M1))))))  1of(2of(2of(2of(2of(2of(M2))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1)))))))  1of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1)))))))  1of(M2)))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(M1))))))))  1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))
[ma-sub]
Def M.send(k;l;s;v;ms;i)
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> ms
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> =
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if source(l) = i
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if concat(map(tgf.
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if map(x.
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;2of(tgf)
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;(s
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;,v));L))
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> else nil fi
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (tg:Id
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (if source(l) = i
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (if M.da(rcv(ltg))
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==>  (else Top fi) List
[ma-send]
Def M.din(l,tg) == 1of(2of(M))(rcv(ltg))?Top[ma-din]
Def M.da(a) == 1of(2of(M))(a)?Top[ma-da]
Def M.ds(x) == 1of(M)(x)?Top[ma-ds]
Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Voida:Id fp-> State(ds)ma-valtype(da; locl(a))Prop
Def == kx:KndId fp-> State(ds)ma-valtype(da; 1of(kx))ds(2of(kx))?Void
Def == kl:KndIdLnk fp-> (tg:Id
Def == kl:KndIdLnk fp-> (State(ds)ma-valtype(da; 1of(kl))
Def == kl:KndIdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd Listltg:IdLnkId fp-> Knd ListTop
[msga]
Def ma-valtype(dak) == da(k)?Top[ma-valtype]
Def State(ds) == x:Idds(x)?Top[ma-state]

In prior sections: mb list 1 mb event system 1 mb event system 3 mb basic mb event system 2

Try larger context: EventSystems IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

mb event system 4 Sections EventSystems Doc