is mentioned by
Thm* fpf-dom-list(f) | [fpf-dom-list_wf] |
| [fpf-empty-compatible-left] | |
| [fpf-empty-compatible-right] | |
| [fpf-single-dom-sq] | |
| [fpf-single-dom] | |
| [fpf-val-single1] | |
Thm* x : v(y)?z ~ if eqof(eq)(x,y) | [fpf-cap-single] |
| [fpf-ap-single] | |
| [fpf-cap-single1] | |
Thm* f | [fpf-join-ap-sq] |
Thm* fpf-is-empty(f | [fpf-join-is-empty] |
Thm* x | [fpf-join-dom2] |
Def == x:Id fp-> Top Def == x:Knd Def == Top | [msg-form] |
Def == Def == & Def == & Def == & Def == & Def == ef=1of(2of(2of(2of(2of(M)))))(kx) Def == & Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl) Def == & (tg | [ma-feasible] |
Def == M1 ||decl M2 Def == & 1of(2of(2of(M1))) || 1of(2of(2of(M2))) Def == & 1of(2of(2of(2of(M1)))) || 1of(2of(2of(2of(M2)))) Def == & 1of(2of(2of(2of(2of(M1))))) || 1of(2of(2of(2of(2of(M2))))) Def == & 1of(2of(2of(2of(2of(2of(M1)))))) || 1of(2of(2of(2of(2of(2of(M2)))))) Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(2of(2of(2of(2of(2of(2of( Def == & 1of(2of(2of(2of(2of(2of(2of(M1))))))) || 1of(M2))))))) Def == & 1of(2of(2of(2of(2of(2of(2of(2of( Def == & 1of(M1)))))))) || 1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))) | [ma-compatible] |
Def == 1of(M1) Def == & 1of(2of(2of(M1))) Def == & & 1of(2of(2of(2of(M1)))) Def == & & 1of(2of(2of(2of(2of(M1))))) Def == & & 1of(2of(2of(2of(2of(2of(M1)))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(2of( Def == & & 1of(M1)))))))) | [ma-sub] |
Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> ms Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> = Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if source(l) = i Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if concat(map( Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if map( Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;2of(tgf) Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;(s Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> if <1of(tgf),x>;,v));L)) Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> else nil fi Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> Def == L != 1of(2of(2of(2of(2of(2of(M))))))(<k,l>) ==> | [ma-send] |
| [ma-din] | |
| [ma-da] | |
| [ma-ds] | |
Def == ds:x:Id fp-> Type Def == Def == Def == kx:Knd Def == kl:Knd Def == kl:Knd Def == kl:Knd Def == | [msga] |
| [ma-valtype] | |
| [ma-state] |
In prior sections: mb list 1 mb event system 1 mb event system 3 mb basic mb event system 2
Try larger context:
EventSystems
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html