Definitions mb event system 5 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
event_systemDef ES
Def == E:Type
Def == EqDecider(E)(T:IdIdType
Def == EqDecider(E)(V:IdIdType
Def == EqDecider(E)(M:IdLnkIdType
Def == EqDecider(E)(Top(loc:EId
Def == EqDecider(E)(Top(kind:EKnd
Def == EqDecider(E)(Top(val:(e:Eeventtype(kind;loc;V;M;e))
Def == EqDecider(E)(Top(when:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(after:(x:Ide:ET(loc(e),x))
Def == EqDecider(E)(Top(sends:(l:IdLnkE(Msg_sub(lM) List))
Def == EqDecider(E)(Top(sender:{e:Eisrcv(kind(e)) }E
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||sends
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||(lnk(kind(e))
Def == EqDecider(E)(Top(index:(e:{e:Eisrcv(kind(e)) }||,sender(e))||)
Def == EqDecider(E)(Top(first:E
Def == EqDecider(E)(Top(pred:{e':E(first(e')) }E
Def == EqDecider(E)(Top(causl:EEProp
Def == EqDecider(E)(Top(ESAxioms{i:l}
Def == EqDecider(E)(Top(ESAxioms(E;
Def == EqDecider(E)(Top(ESAxioms(T;
Def == EqDecider(E)(Top(ESAxioms(M;
Def == EqDecider(E)(Top(ESAxioms(loc;
Def == EqDecider(E)(Top(ESAxioms(kind;
Def == EqDecider(E)(Top(ESAxioms(val;
Def == EqDecider(E)(Top(ESAxioms(when;
Def == EqDecider(E)(Top(ESAxioms(after;
Def == EqDecider(E)(Top(ESAxioms(sends;
Def == EqDecider(E)(Top(ESAxioms(sender;
Def == EqDecider(E)(Top(ESAxioms(index;
Def == EqDecider(E)(Top(ESAxioms(first;
Def == EqDecider(E)(Top(ESAxioms(pred;
Def == EqDecider(E)(Top(ESAxioms(causl)
Def == EqDecider(E)(Top(Top))
Thm* ES  Type{i'}
eventtypeDef eventtype(k;loc;V;M;e) == kindcase(k(e);a.V(loc(e),a);l,t.M(l,t))
Thm* E:Type, V:(IdIdType), M:(IdLnkIdType), loc:(EId), k:(EKnd),
Thm* e:E. eventtype(k;loc;V;M;e Type
fair-fifoDef FairFifo
Def == (i:Id, t:l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil  Msg List)
Def == & (i:Id, t:.
Def == & (isnull(a(i;t))
Def == & (
Def == & ((x:Id. s(i;t+1).x = s(i;t).x  vartype(i;x))
Def == & (& m(i;t) = nil  Msg List)
Def == & (i:Id, t:l:IdLnk.
Def == & (isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)||1 & hd(queue(l;t)) = msg(a(i;t))  Msg)
Def == & (l:IdLnk, t:.
Def == & (t':
Def == & (tt' & isrcv(l;a(destination(l);t'))  queue(l;t') = nil  Msg List)
w-esDef ES(the_w;p)
Def == <E
Def == ,product-deq(Id;;IdDeq;NatDeq)
Def == ,(i,x. vartype(i;x))
Def == ,(i,a. V(i;locl(a)))
Def == ,the_w.M
Def == ,
Def == ,(e.loc(e))
Def == ,(e.kind(e))
Def == ,(e.val(e))
Def == ,(x,e. (x when e))
Def == ,(x,e. (x after e))
Def == ,(l,e. sends(l;e))
Def == ,(e.sender(e))
Def == ,(e.index(e))
Def == ,(e.first(e))
Def == ,(e.pred(e))
Def == ,(e,e'e <c e')
Def == ,world_DASH_event_DASH_system{1:l, i:l}(the_w,p)
Def == ,>
loclDef locl(a) == inr(a)
Thm* a:Id. locl(a Knd
w-EDef E == {p:(Id)| isnull(a(1of(p);2of(p))) }
w-MDef w.M == 1of(2of(2of(w)))
w-VDef V(i;k) == kindcase(k;a.1of(2of(w))(i,a);l,tg.1of(2of(2of(w)))(l,tg))
w-ekindDef kind(e) == kind(act(e))
w-locDef loc(e) == 1of(e)
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}

About:
pairproductproductlistnilboolitnatural_numberaddinr
setlambdaapplyfunctionuniverseequalmembertop
propimpliesandorallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 5 Sections EventSystems Doc