| Some definitions of interest. |
|
deq | Def EqDecider(T) == eq:T T    x,y:T. x = y  (eq(x,y)) |
| | Thm* T:Type. EqDecider(T) Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
fpf-ap | Def f(x) == 2of(f)(x) |
|
fpf-dom | Def x dom(f) == deq-member(eq;x;1of(f)) |
|
strong-subtype | Def strong-subtype(A;B)
Def == (A r B)
Def == & ({b:B| a:A. b = a B } r A)
Def == & ( a1,a2:A. a1 = a2 B  a1 = a2) |