Definitions mb event system 5 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
da-outlinksDef da-outlinks(da;i)
Def == mapfilter(k.da-outlink-f(da;k);k.has-src(i;k);fpf-dom-list(da))
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
IdDef Id == Atom
Thm* Id  Type
assertDef b == if b True else False fi
Thm* b:b  Prop
fpf-singleDef x : v == <[x],x.v>
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
isrcvDef isrcv(k) == isl(k)
Thm* k:Knd. isrcv(k 
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
lnkDef lnk(k) == 1of(outl(k))
Thm* k:Knd. isrcv(k lnk(k IdLnk
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id
mapfilterDef mapfilter(f;P;L) == map(f;filter(P;L))
Thm* T:Type, P:(T), T':Type, f:({x:TP(x) }T'), L:T List.
Thm* mapfilter(f;P;L T' List
notDef A == A  False
Thm* A:Prop. (A Prop
pi1Def 1of(t) == t.1
Thm* A:Type, B:(AType), p:(a:AB(a)). 1of(p A
tagofDef tag(k) == 2of(outl(k))
Thm* k:Knd. isrcv(k tag(k Id
pi2Def 2of(t) == t.2
Thm* A:Type, B:(AType), p:(a:AB(a)). 2of(p B(1of(p))

About:
pairspreadspreadproductproductlistconsnilboolifthenelse
assertless_thanatomunionsetlambdaapplyfunctionuniverseequal
memberpropimpliesandfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 5 Sections EventSystems Doc