Definitions mb event system 5 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
msgaDef MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Voida:Id fp-> State(ds)ma-valtype(da; locl(a))Prop
Def == kx:KndId fp-> State(ds)ma-valtype(da; 1of(kx))ds(2of(kx))?Void
Def == kl:KndIdLnk fp-> (tg:Id
Def == kl:KndIdLnk fp-> (State(ds)ma-valtype(da; 1of(kl))
Def == kl:KndIdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd Listltg:IdLnkId fp-> Knd ListTop
Thm* MsgA  Type{i'}
assertDef b == if b True else False fi
Thm* b:b  Prop
ma-emptyDef  == mk-ma(; ; ; ; ; ; ; )
ma-is-emptyDef ma-is-empty(M)
Def == fpf-is-empty(1of(M))fpf-is-empty(1of(2of(M)))
Def == fpf-is-empty(1of(2of(2of(M))))fpf-is-empty(1of(2of(2of(2of(M)))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(M))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(M)))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(M))))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(2of(M)))))))))

About:
productproductlistboolifthenelseassertvoidfunction
universemembertoppropfalsetrueall!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 5 Sections EventSystems Doc