| | Some definitions of interest. |
|
| ma-empty | Def == mk-ma(; ; ; ; ; ; ; ) |
|
| fpf-empty | Def == <nil, x. > |
|
| ma-sub | Def M1 M2
Def == 1of(M1) 1of(M2) & 1of(2of(M1)) 1of(2of(M2))
Def == & 1of(2of(2of(M1))) 1of(2of(2of(M2)))
Def == & & 1of(2of(2of(2of(M1)))) 1of(2of(2of(2of(M2))))
Def == & & 1of(2of(2of(2of(2of(M1))))) 1of(2of(2of(2of(2of(M2)))))
Def == & & 1of(2of(2of(2of(2of(2of(M1)))))) 1of(2of(2of(2of(2of(2of(M2))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) 1of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) 1of(M2)))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(M1)))))))) 1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))) |
|
| fpf-sub | Def f g == x:A. x dom(f)  x dom(g) & f(x) = g(x) B(x) |
|
| msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | | Thm* MsgA Type{i'} |
|
| top | Def Top == Void given Void |
| | | Thm* Top Type |