| Some definitions of interest. | |
| ma-sub | Def == 1of(M1) Def == & 1of(2of(2of(M1))) Def == & & 1of(2of(2of(2of(M1)))) Def == & & 1of(2of(2of(2of(2of(M1))))) Def == & & 1of(2of(2of(2of(2of(2of(M1)))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(M1))))))) Def == & & 1of(2of(2of(2of(2of(2of(2of(2of( Def == & & 1of(M1)))))))) |
| msga | Def == ds:x:Id fp-> Type Def == Def == Def == kx:Knd Def == kl:Knd Def == kl:Knd Def == kl:Knd Def == |
| assert | |
| iff | |
| ma-empty | |
| ma-is-empty | Def == fpf-is-empty(1of(M)) Def == fpf-is-empty(1of(2of(2of(M)))) Def == fpf-is-empty(1of(2of(2of(2of(2of(M)))))) Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(M))))))) Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(M)))))))) Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(2of(M))))))))) |
About: