| Some definitions of interest. |
|
msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | Thm* MsgA Type{i'} |
|
Knd | Def Knd == (IdLnk Id)+Id |
| | Thm* Knd Type |
|
ma-state | Def State(ds) == x:Id ds(x)?Top |
|
ma-valtype | Def ma-valtype(da; k) == da(k)?Top |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
ma-single-effect1 | Def ma-single-effect1(x;A;y;B;k;T;f)
Def == ma-single-effect(x : A y : B; k : T; k; x; ( s,v. f(s(x),s(y),v))) |
|
fpf-join | Def f g == <1of(f) @ filter( a. a dom(f);1of(g)), a.f(a)?g(a)> |
|
fpf-cap | Def f(x)?z == if x dom(f) f(x) else z fi |
|
fpf-single | Def x : v == <[x], x.v> |
|
id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |