| | Some definitions of interest. |
|
| Kind-deq | Def KindDeq == union-deq(IdLnk Id;Id;product-deq(IdLnk;Id;IdLnkDeq;IdDeq);IdDeq) |
|
| Knd | Def Knd == (IdLnk Id)+Id |
| | | Thm* Knd Type |
|
| ma-state | Def State(ds) == x:Id ds(x)?Top |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| eqof | Def eqof(d) == 1of(d) |
| | | Thm* T:Type, d:EqDecider(T). eqof(d) T T   |
|
| fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
| locl | Def locl(a) == inr(a) |
| | | Thm* a:Id. locl(a) Knd |