| Some definitions of interest. |
|
ma-feasible | Def Feasible(M)
Def == x dom(1of(M)). T=1of(M)(x)  T
Def == & k dom(1of(2of(M))). T=1of(2of(M))(k)  Dec(T)
Def == & a dom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a) 
Def == & s:State(1of(M)). Dec( v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == & kx dom(1of(2of(2of(2of(2of(M)))))).
Def == ef=1of(2of(2of(2of(2of(M)))))(kx)  M.frame(1of(kx) affects 2of(kx))
Def == & kl dom(1of(2of(2of(2of(2of(2of(M))))))).
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl)  tg:Id.
Def == & (tg map( p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>) |
|
msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | Thm* MsgA Type{i'} |