| Some definitions of interest. |
|
ma-is-empty | Def ma-is-empty(M)
Def == fpf-is-empty(1of(M)) fpf-is-empty(1of(2of(M)))
Def == fpf-is-empty(1of(2of(2of(M)))) fpf-is-empty(1of(2of(2of(2of(M)))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(M))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(M)))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(M))))))))
Def == fpf-is-empty(1of(2of(2of(2of(2of(2of(2of(2of(M))))))))) |
|
ma-join-list | Def (L) == reduce( A,B. A B;;L) |
|
msg-form | Def MsgAForm
Def == x:Id fp-> Top x:Knd fp-> Type x:Id fp-> Top x:Id fp-> Top
Def == x:Knd Id fp-> Top x:Knd IdLnk fp-> Top x:Id fp-> Top x:IdLnk Id fp-> Top
Def == Top |
|
msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | Thm* MsgA Type{i'} |