| Some definitions of interest. |
|
ma-join | Def M1 M2
Def == mk-ma(1of(M1) 1of(M2);
Def == mk-ma(1of(2of(M1)) 1of(2of(M2));
Def == mk-ma(1of(2of(2of(M1))) 1of(2of(2of(M2)));
Def == mk-ma(1of(2of(2of(2of(M1)))) 1of(2of(2of(2of(M2))));
Def == mk-ma(1of(2of(2of(2of(2of(M1))))) 1of(2of(2of(2of(2of(M2)))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1)))))) 1of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1)))))) 1of(M2))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1))))))) 1of(2of(2of(2of(2of(2of(2of(M2)))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1)))))))) 1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))) |
|
ma-outlinks | Def ma-outlinks(M;i) == da-outlinks(1of(2of(M));i) |
|
msg-form | Def MsgAForm
Def == x:Id fp-> Top x:Knd fp-> Type x:Id fp-> Top x:Id fp-> Top
Def == x:Knd Id fp-> Top x:Knd IdLnk fp-> Top x:Id fp-> Top x:IdLnk Id fp-> Top
Def == Top |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |