Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ma-joinDef M1  M2
Def == mk-ma(1of(M1 1of(M2);
Def == mk-ma(1of(2of(M1))  1of(2of(M2));
Def == mk-ma(1of(2of(2of(M1)))  1of(2of(2of(M2)));
Def == mk-ma(1of(2of(2of(2of(M1))))  1of(2of(2of(2of(M2))));
Def == mk-ma(1of(2of(2of(2of(2of(M1)))))  1of(2of(2of(2of(2of(M2)))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1))))))  1of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(2of(2of(2of(2of(2of(M1))))))  1of(M2))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1)))))))  1of(2of(2of(2of(2of(2of(2of(M2)))))));
Def == mk-ma(1of(2of(2of(2of(2of(2of(2of(2of(
Def == mk-ma(1of(M1))))))))  1of(2of(2of(2of(2of(2of(2of(2of(M2)))))))))
ma-outlinksDef ma-outlinks(M;i) == da-outlinks(1of(2of(M));i)
msg-formDef MsgAForm
Def == x:Id fp-> Topx:Knd fp-> Typex:Id fp-> Topx:Id fp-> Top
Def == x:KndId fp-> Topx:KndIdLnk fp-> Topx:Id fp-> Topx:IdLnkId fp-> Top
Def == Top
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
IdDef Id == Atom
Thm* Id  Type
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop

About:
productlistless_thanatomuniverseequalmembertop
propallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc