| Some definitions of interest. |
|
ma-feasible | Def Feasible(M)
Def == x dom(1of(M)). T=1of(M)(x)  T
Def == & k dom(1of(2of(M))). T=1of(2of(M))(k)  Dec(T)
Def == & a dom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a) 
Def == & s:State(1of(M)). Dec( v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == & kx dom(1of(2of(2of(2of(2of(M)))))).
Def == ef=1of(2of(2of(2of(2of(M)))))(kx)  M.frame(1of(kx) affects 2of(kx))
Def == & kl dom(1of(2of(2of(2of(2of(2of(M))))))).
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl)  tg:Id.
Def == & (tg map( p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>) |
|
ma-state | Def State(ds) == x:Id ds(x)?Top |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
fpf-all | Def x dom(f). v=f(x)  P(x;v) == x:A. x dom(f)  P(x;f(x)) |
|
ma-single-pre1 | Def ma-single-pre1(x;A;a;T;y,v.P(y;v))
Def == (with ds: x : A
Def == (action a:T
Def == (precondition a(v) is
Def == ( s,v. P(s(x);v) s v) |
|
ma-single-pre | Def (with ds: ds
Def (action a:T
Def (precondition a(v) is
Def (P s v)
Def == mk-ma(ds; locl(a) : T; ; a : P; ; ; ; ) |
|
fpf-single | Def x : v == <[x], x.v> |
|
id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |