Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ma-feasibleDef Feasible(M)
Def == xdom(1of(M)). T=1of(M)(x  T
Def == kdom(1of(2of(M))). T=1of(2of(M))(k  Dec(T)
Def == adom(1of(2of(2of(2of(M))))). p=1of(2of(2of(2of(M))))(a 
Def == &s:State(1of(M)). Dec(v:1of(2of(M))(locl(a))?Top. p(s,v))
Def == kxdom(1of(2of(2of(2of(2of(M)))))). 
Def == ef=1of(2of(2of(2of(2of(M)))))(kx  M.frame(1of(kx) affects 2of(kx))
Def == kldom(1of(2of(2of(2of(2of(2of(M))))))). 
Def == & snd=1of(2of(2of(2of(2of(2of(M))))))(kl  tg:Id. 
Def == & (tg  map(p.1of(p);snd))  M.sframe(1of(kl) sends <2of(kl),tg>)
ma-stateDef State(ds) == x:Idds(x)?Top
IdDef Id == Atom
Thm* Id  Type
decidableDef Dec(P) == P  P
Thm* A:Prop. Dec(A Prop
fpfDef a:A fp-> B(a) == d:A Lista:{a:A| (a  d) }B(a)
Thm* A:Type, B:(AType). a:A fp-> B(a Type
fpf-allDef xdom(f). v=f(x  P(x;v) == x:Ax  dom(f P(x;f(x))
ma-single-pre1Def ma-single-pre1(x;A;a;T;y,v.P(y;v))
Def == (with ds: x : A
Def == (action a:T
Def == (precondition a(v) is
Def == (s,vP(s(x);v) s v)
ma-single-preDef (with ds: ds
Def (action a:T
Def (precondition a(v) is
Def (P s v)
Def == mk-ma(ds; locl(a) : T; ; a : P; ; ; ; )
fpf-singleDef x : v == <[x],x.v>
id-deqDef IdDeq == product-deq(Atom;;AtomDeq;NatDeq)

About:
pairproductproductlistconsnildecidableatom
setlambdaapplyfunctionuniversemembertop
propimpliesandorallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc