| Some definitions of interest. |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
fpf-all | Def x dom(f). v=f(x)  P(x;v) == x:A. x dom(f)  P(x;f(x)) |
|
fpf-single | Def x : v == <[x], x.v> |
|
id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |