Definitions mb event system 6 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
dsysDef Dsys == IdMsgA
Thm* Dsys  Type{i'}
ma-subDef M1  M2
Def == 1of(M1 1of(M2) & 1of(2of(M1))  1of(2of(M2))
Def == & 1of(2of(2of(M1)))  1of(2of(2of(M2)))
Def == & & 1of(2of(2of(2of(M1))))  1of(2of(2of(2of(M2))))
Def == & & 1of(2of(2of(2of(2of(M1)))))  1of(2of(2of(2of(2of(M2)))))
Def == & & 1of(2of(2of(2of(2of(2of(M1))))))  1of(2of(2of(2of(2of(2of(M2))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1)))))))  1of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(2of(2of(2of(2of(2of(2of(M1)))))))  1of(M2)))))))
Def == & & 1of(2of(2of(2of(2of(2of(2of(2of(
Def == & & 1of(M1))))))))  1of(2of(2of(2of(2of(2of(2of(2of(M2))))))))
msgaDef MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Voida:Id fp-> State(ds)ma-valtype(da; locl(a))Prop
Def == kx:KndId fp-> State(ds)ma-valtype(da; 1of(kx))ds(2of(kx))?Void
Def == kl:KndIdLnk fp-> (tg:Id
Def == kl:KndIdLnk fp-> (State(ds)ma-valtype(da; 1of(kl))
Def == kl:KndIdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd Listltg:IdLnkId fp-> Knd ListTop
Thm* MsgA  Type{i'}
IdDef Id == Atom
Thm* Id  Type
d-mDef M(i) == D(i)

About:
productproductlistvoidatomapply
functionuniversemembertoppropand
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 6 Sections EventSystems Doc