Rank | Theorem | Name |
4 | Thm* i,x:Id, k:Knd, ds:x:Id fp-> Type, da:a:Knd fp-> Type,
Thm* f:(State(ds) ma-valtype(da; k) ds(x)?Void).
Thm* d-single-effect(i; ds; da; k; x; f)
Thm* realizes es.( x:Id. vartype(i;x) r ds(x)?Top)
Thm* realizes es.& ( e:E.
Thm* realizes es.& (loc(e) = i Id  (valtype(e) r ma-valtype(da; kind(e))))
Thm* realizes es.& ( e:E.
Thm* realizes es.& (loc(e) = i Id
Thm* realizes es.& (
Thm* realizes es.& (kind(e) = k Knd
Thm* realizes es.& (
Thm* realizes es.& ((x after e) = f(( z.(z when e)),val(e)) ds(x)?Top) | [effect-rule] |
cites the following: |
3 | Thm* D:Dsys, P:({es:ES| es is an event system of D } Prop{i'}).
Thm* D realizes2 es.P(es)  D realizes es.P(es) | [d-realizes2-implies-realizes] |
0 | Thm* the_w:World, e:E. act(e) {a:Action(loc(e))| isnull(a) } | [w-act_wf] |
0 | Thm* k:Knd. islocal(k) ~  isrcv(k) | [islocal-not-isrcv] |
1 | Thm* i:Id, w:World, p:FairFifo, t: .
Thm* isnull(a(i;t))  (valtype(<i,t>) ~ valtype(i;a(i;t))) | [es-valtype-w-valtype] |
0 | Thm* d:EqDecider(A), i:A. (eqof(d)(i,i)) ~ true | [eqof_eq_btrue] |