Rank | Theorem | Name |
6 | Thm* D:Dsys, L:Id List.
Thm* ( i:Id. (i L) ma-is-empty(M(i)))
Thm* 
Thm* ( i:Id. Feasible(M(i)))
Thm* 
Thm* ( i L.( ltg ma-outlinks(M(i);i).(destination(1of(ltg)) L)
Thm* ( i L.( ltg ma-outlinks(M(i);i).
Thm* interface-check(D;1of(ltg);1of(2of(ltg));2of(2of(ltg)))))
Thm* 
Thm* d-feasible(D) | [finite-support-feasible] |
cites the following: |
2 | Thm* P:(T  ), T':Type, f:({x:T| P(x) } T'), L:T List, x:T'.
Thm* (x mapfilter(f;P;L))  ( y:T. (y L) & P(y) & x = f(y)) | [member_map_filter] |
0 | Thm* i:Id, k:Knd. has-src(i;k)  isrcv(k) & source(lnk(k)) = i | [assert-has-src] |
5 | Thm* P:(T Prop).
Thm* ( x:T. Dec(P(x)))
Thm* 
Thm* (finite-type({x:T| P(x) })  ( L:T List. x:T. P(x)  (x L))) | [finite-decidable-set] |
3 | Thm* ll:(T List) List, x:T. (x concat(ll))  ( l:T List. (l ll) & (x l)) | [member-concat] |
2 | Thm* a:T List, x:T', f:(T T'). (x map(f;a))  ( y:T. (y a) & x = f(y)) | [member_map] |
2 | Thm* eq:EqDecider(A), L:A List, x:A. deq-member(eq;x;L)  (x L) | [assert-deq-member] |
2 | Thm* M:MsgA. ma-is-empty(M)  M = MsgA | [assert-ma-is-empty] |