Rank | Theorem | Name |
6 | Thm* A,B,C:MsgA.
Thm* A || B
Thm* 
Thm* ma-frame-compatible(A; B)
Thm* 
Thm* ma-sframe-compatible(A; B)
Thm* 
Thm* C || A
Thm* 
Thm* ma-frame-compatible(C; A)
Thm* 
Thm* ma-sframe-compatible(C; A)
Thm* 
Thm* C || B
Thm* 
Thm* ma-frame-compatible(C; B)
Thm* 
Thm* ma-sframe-compatible(C; B)
Thm* 
Thm* C || A B & ma-frame-compatible(C; A B) & ma-sframe-compatible(C; A B) | [ma-compatible-join] |
cites the following: |
5 | Thm* B1,B2:(A Type), eq:EqDecider(A), f:a:A fp-> B1(a), g:a:A fp-> B2(a).
Thm* f f g | [fpf-sub-join-left] |
0 | Thm* eq:EqDecider(X), f,g:x:X fp-> Type, x:X. f g  (f(x)?Void r g(x)?T) | [subtype-fpf-cap-void] |
0 | Thm* eq:EqDecider(X), f,g:x:X fp-> Type, x:X. g f  (f(x)?T r g(x)?Top) | [subtype-fpf-cap-top] |
1 | Thm* ds,ds':ltg:Id fp-> Type. ds ds'  (State(ds') r State(ds)) | [ma-state-subtype] |
5 | Thm* eq:EqDecider(T), f,g,h:x:T fp-> Type.
Thm* f || g
Thm* 
Thm* h || f
Thm* 
Thm* h || g
Thm* 
Thm* g h f g & f h f g & h g h f g & h f h f g | [fpf-compatible-triple] |
5 | Thm* eq:EqDecider(A), B:(A Type), f,g,h:a:A fp-> B(a).
Thm* h || f  h || g  h || f g | [fpf-compatible-join] |
3 | Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a), x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom] |
0 | Thm* eq:EqDecider(A), f:a:A fp-> Top, g:Top, x:A.
Thm* f g(x) ~ if x dom(f) f(x) else g(x) fi | [fpf-join-ap-sq] |
4 | Thm* eq:EqDecider(A), f,g:a:A fp-> Top, x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom2] |