Rank | Theorem | Name |
6 | Thm* A,B:MsgA.
Thm* A || B
Thm* 
Thm* ma-frame-compatible(A; B)
Thm* 
Thm* ma-sframe-compatible(A; B)  Feasible(A)  Feasible(B)  Feasible(A B) | [ma-join-feasible] |
cites the following: |
3 | Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a), x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom] |
4 | Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a), x:A.
Thm* x dom(f g)  f g(x) = if x dom(f) f(x) else g(x) fi B(x) | [fpf-join-ap] |
5 | Thm* B:(A Type), eq:EqDecider(A), f,g:a:A fp-> B(a). f || g  g f g | [fpf-sub-join-right] |
5 | Thm* B1,B2:(A Type), eq:EqDecider(A), f:a:A fp-> B1(a), g:a:A fp-> B2(a).
Thm* f f g | [fpf-sub-join-left] |
0 | Thm* eq:EqDecider(X), f,g:x:X fp-> Type. g f  ( x:X. f(x)?Top r g(x)?Top) | [subtype-fpf-cap] |
4 | Thm* eq:EqDecider(A), f,g:a:A fp-> Top, x:A, z:Top.
Thm* f g(x)?z ~ if x dom(f) f(x)?z else g(x)?z fi | [fpf-join-cap-sq] |
0 | Thm* eq:EqDecider(A), f:a:A fp-> Top, g:Top, x:A.
Thm* f g(x) ~ if x dom(f) f(x) else g(x) fi | [fpf-join-ap-sq] |
4 | Thm* eq:EqDecider(A), f,g:a:A fp-> Top, x:A.
Thm* x dom(f g)  x dom(f) x dom(g) | [fpf-join-dom2] |