Rank | Theorem | Name |
4 | Thm* i,a:Id, T:Type, ds:x:Id fp-> Type, P:(State(ds) T Prop),
Thm* init:x:Id fp-> ds(x)?Void.
Thm* ( x:Id. x dom(ds)  x dom(init))
Thm* 
Thm* @i (with ds: ds
Thm* @i init: init
Thm* @i action a:T
Thm* @i precondition a(v) is
Thm* @i P s v)
Thm* realizes es.( v:T. P(( x.init(x)? ),v))  ( e:E. loc(e) = i Id) | [pre-init-rule] |
cites the following: |
3 | Thm* D:Dsys, P:({es:ES| es is an event system of D } Prop{i'}).
Thm* D realizes2 es.P(es)  D realizes es.P(es) | [d-realizes2-implies-realizes] |
0 | Thm* d:EqDecider(A), i:A. (eqof(d)(i,i)) ~ true | [eqof_eq_btrue] |
1 | Thm* strong-subtype(A;B)  (EqDecider(B) r EqDecider(A)) | [strong-subtype-deq-subtype] |