Rank | Theorem | Name |
5 | Thm* i:Id, k:Knd, l:IdLnk, ds:x:Id fp-> Type, da:a:Knd fp-> Type,
Thm* f:(tg:Id State(ds) ma-valtype(da; k) (da(rcv(l; tg))?Void List)) List.
Thm* source(l) = i
Thm* 
Thm* d-single-sends(i; ds; da; k; l; f)
Thm* realizes es.( x:Id. vartype(i;x) r ds(x)?Top)
Thm* realizes es.& ( e:E.
Thm* realizes es.& (loc(e) = i Id  (valtype(e) r ma-valtype(da; kind(e))))
Thm* realizes es.& ( e:E.
Thm* realizes es.& (isrcv(e)
Thm* realizes es.& (
Thm* realizes es.& (lnk(e) = l IdLnk
Thm* realizes es.& (
Thm* realizes es.& ((valtype(e) r ma-valtype(da; kind(e))))
Thm* realizes es.& ({m:Msg| source(mlnk(m)) = i } r Msg
Thm* realizes es.& ((( l,tg. da(rcv(l; tg))?Top)))
Thm* realizes es.& ( e:E.
Thm* realizes es.& (loc(e) = i Id
Thm* realizes es.& (
Thm* realizes es.& (kind(e) = k Knd
Thm* realizes es.& (
Thm* realizes es.& (sends(l;e)
Thm* realizes es.& (=
Thm* realizes es.& (tagged-messages(l; z.(z when e);val(e);f)
Thm* realizes es.& ( Msg(( l,tg. da(rcv(l; tg))?Top)) List) | [sends-rule] |
cites the following: |
3 | Thm* D:Dsys, P:({es:ES| es is an event system of D } Prop{i'}).
Thm* D realizes2 es.P(es)  D realizes es.P(es) | [d-realizes2-implies-realizes] |
0 | Thm* the_w:World, e:E. act(e) {a:Action(loc(e))| isnull(a) } | [w-act_wf] |
1 | Thm* strong-subtype(A;B)  (EqDecider(B) r EqDecider(A)) | [strong-subtype-deq-subtype] |
0 | Thm* d:EqDecider(A), i:A. (eqof(d)(i,i)) ~ true | [eqof_eq_btrue] |
1 | Thm* i:Id, w:World, p:FairFifo, t: .
Thm* isnull(a(i;t))  (valtype(<i,t>) ~ valtype(i;a(i;t))) | [es-valtype-w-valtype] |
0 | Thm* as:Top List, f,g:Top. map(g;map(f;as)) ~ map(g o f;as) | [map-map] |
0 | Thm* T:Type, P:(T  ), l:T List. filter(P;l) {x:T| P(x) } List | [filter_type] |
4 | Thm* a:T List, f:(T T). ( x:T. (x a)  f(x) = x)  map(f;a) = a | [trivial_map] |
0 | Thm* f:(A B), l:A List. map(f;l) = nil  l = nil | [map_is_nil] |