| Some definitions of interest. |
|
ma-state | Def State(ds) == x:Id ds(x)?Top |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
id-deq | Def IdDeq == product-deq(Atom; ;AtomDeq;NatDeq) |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
fpf | Def a:A fp-> B(a) == d:A List a:{a:A| (a d) } B(a) |
| | Thm* A:Type, B:(A Type). a:A fp-> B(a) Type |
|
fpf-cap | Def f(x)?z == if x dom(f) f(x) else z fi |
|
fpf-dom | Def x dom(f) == deq-member(eq;x;1of(f)) |
|
fpf-single | Def x : v == <[x], x.v> |