| Some definitions of interest. |
|
msga | Def MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Void a:Id fp-> State(ds) ma-valtype(da; locl(a)) Prop
Def == kx:Knd Id fp-> State(ds) ma-valtype(da; 1of(kx)) ds(2of(kx))?Void
Def == kl:Knd IdLnk fp-> (tg:Id
Def == kl:Knd IdLnk fp-> ( State(ds) ma-valtype(da; 1of(kl))
Def == kl:Knd IdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd List ltg:IdLnk Id fp-> Knd List Top |
| | Thm* MsgA Type{i'} |
|
Knd | Def Knd == (IdLnk Id)+Id |
| | Thm* Knd Type |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
recognizer1 | Def recognizer1(loc;T;A;P;k;i;r;x)
Def == if loc = i
Def == if [r : initially r = false ;
Def == if [only members of [k] affect r : ;
Def == if [ma-single-effect1(r; ;x;A;k;T; r,x,v. P(x,v)  r)]
Def == else nil fi |
| | Thm* loc:Id, T,A:Type, P:(A T  ), k:Knd, i,r,x:Id.
Thm* A  T  x = r  recognizer1(loc;T;A;P;k;i;r;x) MsgA List |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |