Definitions mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
msgaDef MsgA
Def == ds:x:Id fp-> Type
Def == da:a:Knd fp-> Type
Def == x:Id fp-> ds(x)?Voida:Id fp-> State(ds)ma-valtype(da; locl(a))Prop
Def == kx:KndId fp-> State(ds)ma-valtype(da; 1of(kx))ds(2of(kx))?Void
Def == kl:KndIdLnk fp-> (tg:Id
Def == kl:KndIdLnk fp-> (State(ds)ma-valtype(da; 1of(kl))
Def == kl:KndIdLnk fp-> ((da(rcv(2of(kl); tg))?Void List)) List
Def == x:Id fp-> Knd Listltg:IdLnkId fp-> Knd ListTop
Thm* MsgA  Type{i'}
trigger1Def trigger1(loc;T;A;P;i;k;a;x)
Def == [(recognizer1(loc;T;A;P;k;i;"trigger";x)); 
Def == [if loc = i ma-single-pre1("trigger";;a;Unit;x,v.x) else  fi]
Thm* loc:Id, T,A:Type, P:(AT), i:Id, k:Knd, a,x:Id.
Thm* A
Thm* 
Thm* T
Thm* 
Thm* x = "trigger"  locl(a) = k  trigger1(loc;T;A;P;i;k;a;x MsgA List
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
IdDef Id == Atom
Thm* Id  Type
loclDef locl(a) == inr(a)
Thm* a:Id. locl(a Knd
mkidDef x_n == <x,n>
Thm* x:Atom, n:x_n  Id
notDef A == A  False
Thm* A:Prop. (A Prop

About:
pairproductproductlistconsnilboolifthenelse
unitvoidnatural_numberatomtokenunioninrfunction
universeequalmembertoppropimpliesfalseall
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 7 Sections EventSystems Doc