| Some definitions of interest. |
|
d-sub | Def D1 D2 == i:Id. M(i) M(i) |
|
dsys | Def Dsys == Id MsgA |
| | Thm* Dsys Type{i'} |
|
trigger1 | Def trigger1(loc;T;A;P;i;k;a;x)
Def == [ (recognizer1(loc;T;A;P;k;i;"trigger";x));
Def == [if loc = i ma-single-pre1("trigger"; ;a;Unit;x,v. x) else fi] |
| | Thm* loc:Id, T,A:Type, P:(A T  ), i:Id, k:Knd, a,x:Id.
Thm* A
Thm* 
Thm* T
Thm* 
Thm* x = "trigger"  locl(a) = k  trigger1(loc;T;A;P;i;k;a;x) MsgA List |
|
ma-join-list | Def (L) == reduce( A,B. A B;;L) |
|
possible-world | Def PossibleWorld(D;w)
Def == FairFifo
Def == & ( i,x:Id. vartype(i;x) r M(i).ds(x))
Def == & & ( i:Id, a:Action(i).
Def == & & ( isnull(a)  (valtype(i;a) r M(i).da(kind(a))))
Def == & & ( l:IdLnk, tg:Id. (w.M(l,tg)) r M(source(l)).da(rcv(l; tg)))
Def == & & ( i,x:Id. M(i).init(x,s(i;0).x))
Def == & & ( i:Id, t: .
Def == & & ( isnull(a(i;t))
Def == & & (
Def == & & (( islocal(kind(a(i;t)))
Def == & & ((
Def == & & ((M(i).pre(act(kind(a(i;t))), x.s(i;t).x,val(a(i;t))))
Def == & & (& ( x:Id.
Def == & & (& (M(i).ef(kind(a(i;t)),x, x.s(i;t).x,val(a(i;t)),s(i;t+1).x))
Def == & & (& ( l:IdLnk.
Def == & & (& (M(i).send(kind(a(i;t));l; x.
Def == & & (& (s(i;t).x;val(a(i;t));withlnk(l;m(i;t));i))
Def == & & (& ( x:Id.
Def == & & (& ( M(i).frame(kind(a(i;t)) affects x)
Def == & & (& (
Def == & & (& (s(i;t).x = s(i;t+1).x M(i).ds(x))
Def == & & (& ( l:IdLnk, tg:Id.
Def == & & (& ( M(i).sframe(kind(a(i;t)) sends <l,tg>)
Def == & & (& (
Def == & & (& (w-tagged(tg; onlnk(l;m(i;t))) = nil Msg List))
Def == & & ( i,a:Id, t: .
Def == & & ( t': .
Def == & & (t t'
Def == & & (&  isnull(a(i;t')) & kind(a(i;t')) = locl(a)
Def == & & (& a declared in M(i)
Def == & & (& unsolvable M(i).pre(a, x.s(i;t').x)) |
|
world | Def World
Def == T:Id Id Type
Def == TA:Id Id Type
Def == M:IdLnk Id Type
Def == (i:Id    (x:Id T(i,x))) (i:Id    action(w-action-dec(TA;M;i)))
Def == (i:Id    ({m:Msg(M)| source(mlnk(m)) = i } List)) Top |
| | Thm* World Type{i'} |
|
Knd | Def Knd == (IdLnk Id)+Id |
| | Thm* Knd Type |
|
es-locl | Def (e <loc e') == loc(e) = loc(e') Id & (e < e') |
|
fair-fifo | Def FairFifo
Def == ( i:Id, t: , l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil Msg List)
Def == & ( i:Id, t: .
Def == & ( isnull(a(i;t))
Def == & (
Def == & (( x:Id. s(i;t+1).x = s(i;t).x vartype(i;x))
Def == & (& m(i;t) = nil Msg List)
Def == & ( i:Id, t: , l:IdLnk.
Def == & ( isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)|| 1 & hd(queue(l;t)) = msg(a(i;t)) Msg)
Def == & ( l:IdLnk, t: .
Def == & ( t': .
Def == & (t t' & isrcv(l;a(destination(l);t')) queue(l;t') = nil Msg List) |
|
w-es | Def ES(the_w;p)
Def == <E
Def == ,product-deq(Id; ;IdDeq;NatDeq)
Def == ,( i,x. vartype(i;x))
Def == ,( i,a. V(i;locl(a)))
Def == ,the_w.M
Def == ,
Def == ,( e.loc(e))
Def == ,( e.kind(e))
Def == ,( e.val(e))
Def == ,( x,e. (x when e))
Def == ,( x,e. (x after e))
Def == ,( l,e. sends(l;e))
Def == ,( e.sender(e))
Def == ,( e.index(e))
Def == ,( e.first(e))
Def == ,( e.pred(e))
Def == ,( e,e'. e <c e')
Def == ,world_DASH_event_DASH_system{1:l, i:l}(the_w,p)
Def == , > |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
m-sys-at | Def @i: A(j) == if j = i A else fi |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
es-E | Def E == 1of(es) |
|
es-after | Def (x after e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))))(x,e) |
|
es-first | Def first(e)
Def == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(2of(
Def == 1of(es)))))))))))))))
Def == (e) |
|
es-valtype | Def valtype(e) == if isrcv(e) rcvtype(e) else acttype(e) fi |
|
es-kind | Def kind(e) == 1of(2of(2of(2of(2of(2of(2of(2of(es))))))))(e) |
|
es-loc | Def loc(e) == 1of(2of(2of(2of(2of(2of(2of(es)))))))(e) |
|
es-val | Def val(e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(es)))))))))(e) |
|
es-vartype | Def vartype(i;x) == 1of(2of(2of(es)))(i,x) |
|
es-when | Def (x when e) == 1of(2of(2of(2of(2of(2of(2of(2of(2of(2of(es))))))))))(x,e) |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
ma-single-pre1 | Def ma-single-pre1(x;A;a;T;y,v.P(y;v))
Def == (with ds: x : A
Def == (action a:T
Def == (precondition a(v) is
Def == ( s,v. P(s(x);v) s v) |
|
locl | Def locl(a) == inr(a) |
| | Thm* a:Id. locl(a) Knd |
|
mkid | Def x_n == <x,n> |
| | Thm* x:Atom, n: . x_n Id |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |