Definitions mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
ringDef ring(R;in;out)
Def == (i:|R|. 
Def == ((R(source(in(i)))) & (R(destination(out(i))))
Def == (& source(out(i)) = i
Def == (& & destination(in(i)) = i
Def == (& in(destination(out(i))) = out(i IdLnk
Def == (& out(source(in(i))) = in(i IdLnk)
Def == & (i,j:|R|. k:x.destination(out(x))^k(i) = j  Id)
Def == & |R|
Thm* R:(Id), in,out:(|R|IdLnk). ring(R;in;out Prop
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
rsetDef |R| == {i:Id| (R(i)) }
Thm* R:(Id). |R Type
IdDef Id == Atom
Thm* Id  Type
rdistDef d(i;j) == mu(k.x.n(x)^k+1(i) = j)+1
Thm* R:(Id), in,out:(|R|IdLnk), i,j:|R|. ring(R;in;out d(i;j 
eq_idDef a = b == eqof(IdDeq)(a,b)
Thm* a,b:Id. a = b  
fun_expDef f^n == primrec(n;x.x;i,gf o g)
Thm* T:Type, n:f:(TT). f^n  TT
natDef  == {i:| 0i }
Thm*   Type
nat_plusDef  == {i:| 0<i }
Thm*   Type
notDef A == A  False
Thm* A:Prop. (A Prop
rnextDef n(i) == destination(out(i))
Thm* R:(Id), in,out:(|R|IdLnk), i:|R|. ring(R;in;out n(i |R|

About:
productboolintnatural_numberaddless_thanatomsetlambdaapplyfunctionuniverse
equalmemberpropimpliesandfalseallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 7 Sections EventSystems Doc