| Some definitions of interest. |
|
ring | Def ring(R;in;out)
Def == ( i:|R|.
Def == ( (R(source(in(i)))) & (R(destination(out(i))))
Def == (& source(out(i)) = i
Def == (& & destination(in(i)) = i
Def == (& & in(destination(out(i))) = out(i) IdLnk
Def == (& & out(source(in(i))) = in(i) IdLnk)
Def == & ( i,j:|R|. k: . x.destination(out(x))^k(i) = j Id)
Def == & |R| |
| | Thm* R:(Id  ), in,out:(|R| IdLnk). ring(R;in;out) Prop |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
rset | Def |R| == {i:Id| (R(i)) } |
| | Thm* R:(Id  ). |R| Type |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
rdist | Def d(i;j) == mu( k. x.n(x)^k+1(i) = j)+1 |
| | Thm* R:(Id  ), in,out:(|R| IdLnk), i,j:|R|. ring(R;in;out)  d(i;j)   |
|
eq_id | Def a = b == eqof(IdDeq)(a,b) |
| | Thm* a,b:Id. a = b  |
|
fun_exp | Def f^n == primrec(n; x.x; i,g. f o g) |
| | Thm* T:Type, n: , f:(T T). f^n T T |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
nat_plus | Def  == {i: | 0<i } |
| | Thm*  Type |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
rnext | Def n(i) == destination(out(i)) |
| | Thm* R:(Id  ), in,out:(|R| IdLnk), i:|R|. ring(R;in;out)  n(i) |R| |