| | Some definitions of interest. |
|
| rset | Def |R| == {i:Id| (R(i)) } |
| | | Thm* R:(Id  ). |R| Type |
|
| Id | Def Id == Atom  |
| | | Thm* Id Type |
|
| assert | Def b == if b True else False fi |
| | | Thm* b: . b Prop |
|
| decidable | Def Dec(P) == P P |
| | | Thm* A:Prop. Dec(A) Prop |
|
| not | Def A == A  False |
| | | Thm* A:Prop. ( A) Prop |