Definitions mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
bi-graphDef bi-graph(G;to;from)
Def == i:|G|. 
Def == (lto(i).destination(l) = i
Def == (G(source(l)))
Def == & (l  from(source(l)))
Def == & (lnk-inv(l from(i)))
Def == & (lfrom(i).source(l) = i
Def == & (G(destination(l)))
Def == & & (l  to(destination(l)))
Def == & & (lnk-inv(l to(i)))
bi-graph-edgeDef Edge(G) == {l:IdLnk| i:|G|. (l  from(i)) }
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
rsetDef |R| == {i:Id| (R(i)) }
Thm* R:(Id). |R Type
IdDef Id == Atom
Thm* Id  Type
assertDef b == if b True else False fi
Thm* b:b  Prop
l_allDef (xL.P(x)) == x:T. (x  L P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x))  Prop
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
ldstDef destination(l) == 1of(2of(l))
Thm* l:IdLnk. destination(l Id
lnk-invDef lnk-inv(l) == <1of(2of(l)),1of(l),2of(2of(l))>
lsrcDef source(l) == 1of(l)
Thm* l:IdLnk. source(l Id

About:
pairproductlistboolifthenelseassertless_thanatom
setapplyfunctionuniverseequalmemberprop
impliesandfalsetrueallexists
!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 7 Sections EventSystems Doc