| Some definitions of interest. |
|
IdLnk | Def IdLnk == Id Id  |
| | Thm* IdLnk Type |
|
rset | Def |R| == {i:Id| (R(i)) } |
| | Thm* R:(Id  ). |R| Type |
|
Id | Def Id == Atom  |
| | Thm* Id Type |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
l_all | Def ( x L.P(x)) == x:T. (x L)  P(x) |
| | Thm* T:Type, L:T List, P:(T Prop). ( x L.P(x)) Prop |
|
l_member | Def (x l) == i: . i<||l|| & x = l[i] T |
| | Thm* T:Type, x:T, l:T List. (x l) Prop |
|
ldst | Def destination(l) == 1of(2of(l)) |
| | Thm* l:IdLnk. destination(l) Id |
|
lnk-inv | Def lnk-inv(l) == <1of(2of(l)),1of(l),2of(2of(l))> |
|
lsrc | Def source(l) == 1of(l) |
| | Thm* l:IdLnk. source(l) Id |