Rank | Theorem | Name |
5 | Thm* R:(Id  ), uid:(|R|  ), out,in:(|R| IdLnk).
Thm* ring(R;in;out)
Thm* 
Thm* Inj(|R|; ; uid)
Thm* 
Thm* loc. (ring-leader1(loc;R;uid;out;in))
Thm* realizes es. ldr:|R|.
Thm* realizes es. e@ldr.kind(e) = locl("leader")
Thm* realizes es.& ( i:|R|. e@i.kind(e) = locl("leader")  i = ldr |R|) | [ring-leader1__realizes] |
cites the following: |
3 | Thm* f:(A  ), L:A List. 0<||L||  ( a L.( x L.f(x) f(a))) | [maximal-in-list] |
4 | Thm* R:(Id  ), in,out:(|R| IdLnk).
Thm* ring(R;in;out)  ( L:|R| List. 0<||L|| & ( i:|R|. (i L))) | [ring-list] |
0 | Thm* R:(Id  ). SQType(|R|) | [rset_sq] |
0 | Thm* R:(Id  ), in,out:(|R| IdLnk), j:|R|. ring(R;in;out)  n(p(j)) = j | [rnext-rprev] |
3 | Thm* R:(Id  ), in,out:(|R| IdLnk), i,j:|R|.
Thm* ring(R;in;out)  i = p(j)  d(i;p(j)) = d(i;j)-1 | [rdist-rprev] |
0 | Thm* (A r B)  (B r C)  (A r C) | [subtype_rel_transitivity] |