(145steps total) PrintForm Definitions Lemmas mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
At: ring-leader1 realizes

  R:(Id), uid:(|R|), out,in:(|R|IdLnk).
  ring(R;in;out)
  
  Inj(|R|; uid)
  
  loc.(ring-leader1(loc;R;uid;out;in)) 
  realizes es.ldr:|R|. 
  realizes es.e@ldr.kind(e) = locl("leader")
  realizes es.& (i:|R|. e@i.kind(e) = locl("leader")  i = ldr  |R|)


By: RealizerSetup
THEN
Inst
Thm* R:(Id), in,out:(|R|IdLnk).
Thm* ring(R;in;out (L:|R| List. 0<||L|| & (i:|R|. (i  L)))
[R;in;out]
THEN
ExRepD
THEN
Inst Thm* f:(A), L:A List. 0<||L||  (aL.(xL.f(x)f(a))) [|R|;uid;L]
THENA
Try (Complete Auto)
THEN
Analyze -1
THEN
ExRepD
THEN
RenameVar `ldr' -3


Generated subgoal:

1 1. R : Id
2. uid : |R|
3. out : |R|IdLnk
4. in : |R|IdLnk
5. ring(R;in;out)
6. Inj(|R|; uid)
7. (loc.(ring-leader1(loc;R;uid;out;in)))  Dsys
8. D' : Dsys
9. loc.(ring-leader1(loc;R;uid;out;in))  D'
10. w : World
11. p : FairFifo
12. PossibleWorld(D';w)
13. L : |R| List
14. 0<||L||
15. i:|R|. (i  L)
16. ldr : |R|
17. (ldr  L)
18. (xL.uid(x)uid(ldr))
  ldr:|R|. 
  e@ldr.kind(e) = locl("leader")
  & (i:|R|. e@i.kind(e) = locl("leader")  i = ldr  |R|)

144 steps

About:
listboolintnatural_numberless_thantokenlambdaapply
functionuniverseequalimpliesandall
exists
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

(145steps total) PrintForm Definitions Lemmas mb event system 7 Sections EventSystems Doc