Definitions mb event system 7 Sections EventSystems Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
d-realizesDef D 
Def realizes es.P(es)
Def == D':Dsys. 
Def == D  D'  (w:World, p:FairFifo. PossibleWorld(D';w P(ES(w)))
d-subDef D1  D2 == i:Id. M(i M(i)
dsysDef Dsys == IdMsgA
Thm* Dsys  Type{i'}
ring-leader1Def ring-leader1(loc;R;uid;out;in)
Def == if R(loc)
Def == if [(send-once(loc;;;"send-me";x.x;"vote";out(loc);"me")); 
Def == if [(trigger1(loc;;;x,yx=y;loc;rcv
Def == if [((in(loc)); "vote");"leader";"me")); 
Def == if [(Dconstant(loc;;uid(loc);"me";loc)); 
Def == if [ma-single-sends1(;
Def == if [ma-single-sends1(;
Def == if [ma-single-sends1(;
Def == if [ma-single-sends1("me";
Def == if [ma-single-sends1(rcv((in(loc)); "vote");
Def == if [ma-single-sends1((out(loc));
Def == if [ma-single-sends1("vote";
Def == if [ma-single-sends1((a,b. if a<b [b] else nil fi)); 
Def == if [only [rcv((in(loc)); "vote"); 
Def == if [only [locl("send-me")] sends on (out(loc) with "vote")]
Def == else nil fi
ma-join-listDef (L) == reduce(A,BA  B;;L)
possible-worldDef PossibleWorld(D;w)
Def == FairFifo
Def == & (i,x:Id. vartype(i;xr M(i).ds(x))
Def == & & (i:Id, a:Action(i).
Def == & & (isnull(a (valtype(i;ar M(i).da(kind(a))))
Def == & & (l:IdLnk, tg:Id. (w.M(l,tg)) r M(source(l)).da(rcv(ltg)))
Def == & & (i,x:Id. M(i).init(x,s(i;0).x))
Def == & & (i:Id, t:.
Def == & & (isnull(a(i;t))
Def == & & (
Def == & & ((islocal(kind(a(i;t)))
Def == & & ((
Def == & & ((M(i).pre(act(kind(a(i;t))),x.s(i;t).x,val(a(i;t))))
Def == & & (& (x:Id. 
Def == & & (& (M(i).ef(kind(a(i;t)),x,x.s(i;t).x,val(a(i;t)),s(i;t+1).x))
Def == & & (& (l:IdLnk. 
Def == & & (& (M(i).send(kind(a(i;t));l;x.
Def == & & (& (s(i;t).x;val(a(i;t));withlnk(l;m(i;t));i))
Def == & & (& (x:Id. 
Def == & & (& (M(i).frame(kind(a(i;t)) affects x)
Def == & & (& (
Def == & & (& (s(i;t).x = s(i;t+1).x  M(i).ds(x))
Def == & & (& (l:IdLnk, tg:Id.
Def == & & (& (M(i).sframe(kind(a(i;t)) sends <l,tg>)
Def == & & (& (
Def == & & (& (w-tagged(tg; onlnk(l;m(i;t))) = nil  Msg List))
Def == & & (i,a:Id, t:.
Def == & & (t':
Def == & & (tt'
Def == & & (isnull(a(i;t')) & kind(a(i;t')) = locl(a)
Def == & & (&  a declared in M(i)
Def == & & (&  unsolvable M(i).pre(a,x.s(i;t').x))
worldDef World
Def == T:IdIdType
Def == TA:IdIdType
Def == M:IdLnkIdType
Def == (i:Id(x:IdT(i,x)))(i:Idaction(w-action-dec(TA;M;i)))
Def == (i:Id({m:Msg(M)| source(mlnk(m)) = i } List))Top
Thm* World  Type{i'}
KndDef Knd == (IdLnkId)+Id
Thm* Knd  Type
fair-fifoDef FairFifo
Def == (i:Id, t:l:IdLnk. source(l) = i  onlnk(l;m(i;t)) = nil  Msg List)
Def == & (i:Id, t:.
Def == & (isnull(a(i;t))
Def == & (
Def == & ((x:Id. s(i;t+1).x = s(i;t).x  vartype(i;x))
Def == & (& m(i;t) = nil  Msg List)
Def == & (i:Id, t:l:IdLnk.
Def == & (isrcv(l;a(i;t))
Def == & (
Def == & (destination(l) = i
Def == & (& ||queue(l;t)||1 & hd(queue(l;t)) = msg(a(i;t))  Msg)
Def == & (l:IdLnk, t:.
Def == & (t':
Def == & (tt' & isrcv(l;a(destination(l);t'))  queue(l;t') = nil  Msg List)
ringDef ring(R;in;out)
Def == (i:|R|. 
Def == ((R(source(in(i)))) & (R(destination(out(i))))
Def == (& source(out(i)) = i
Def == (& & destination(in(i)) = i
Def == (& in(destination(out(i))) = out(i IdLnk
Def == (& out(source(in(i))) = in(i IdLnk)
Def == & (i,j:|R|. k:x.destination(out(x))^k(i) = j  Id)
Def == & |R|
Thm* R:(Id), in,out:(|R|IdLnk). ring(R;in;out Prop
IdLnkDef IdLnk == IdId
Thm* IdLnk  Type
alle-atDef e@i.P(e) == e:E. loc(e) = i  Id  P(e)
existse-atDef e@i.P(e) == e:E. loc(e) = i  Id & P(e)
rsetDef |R| == {i:Id| (R(i)) }
Thm* R:(Id). |R Type
w-esDef ES(the_w;p)
Def == <E
Def == ,product-deq(Id;;IdDeq;NatDeq)
Def == ,(i,x. vartype(i;x))
Def == ,(i,a. V(i;locl(a)))
Def == ,the_w.M
Def == ,
Def == ,(e.loc(e))
Def == ,(e.kind(e))
Def == ,(e.val(e))
Def == ,(x,e. (x when e))
Def == ,(x,e. (x after e))
Def == ,(l,e. sends(l;e))
Def == ,(e.sender(e))
Def == ,(e.index(e))
Def == ,(e.first(e))
Def == ,(e.pred(e))
Def == ,(e,e'e <c e')
Def == ,world_DASH_event_DASH_system{1:l, i:l}(the_w,p)
Def == ,>
IdDef Id == Atom
Thm* Id  Type
es-kindDef kind(e) == 1of(2of(2of(2of(2of(2of(2of(2of(es))))))))(e)
injectDef Inj(ABf) == a1,a2:Af(a1) = f(a2 B  a1 = a2
Thm* A,B:Type, f:(AB). Inj(ABf Prop
l_allDef (xL.P(x)) == x:T. (x  L P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x))  Prop
l_existsDef (xL.P(x)) == x:T. (x  L) & P(x)
Thm* T:Type, L:T List, P:(TProp). (xL.P(x))  Prop
l_memberDef (x  l) == i:i<||l|| & x = l[i T
Thm* T:Type, x:Tl:T List. (x  l Prop
natDef  == {i:| 0i }
Thm*   Type
leDef AB == B<A
Thm* i,j:. (ij Prop
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
loclDef locl(a) == inr(a)
Thm* a:Id. locl(a Knd
mkidDef x_n == <x,n>
Thm* x:Atom, n:x_n  Id

About:
pairproductproductlistconsnillist_ind
boolifthenelseitintnatural_numberaddless_thanatomtokenunioninr
setlambdaapplyfunctionrecursive_def_noticeuniverseequalmember
topsubtype_relpropimpliesandorallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb event system 7 Sections EventSystems Doc