Rank | Theorem | Name |
3 | Thm* T:(Id  ), to,from:(|T| (IdLnk List)), f:(Edge(T)  ).
Thm* bi-tree(T;to;from)
Thm* 
Thm* spanner(f;T;to;from)
Thm* 
Thm* ( i,j:|T|.
Thm* (spanner-root(f;T;to;from;i)  spanner-root(f;T;to;from;j)  i = j) | [spanner-root-unique] |
cites the following: |
1 | Thm* L:T List, x:T. null(L)  last([x / L]) = last(L) | [last_cons] |
1 | Thm* l:IdLnk, p:IdLnk List.
Thm* lpath([l / p])
Thm* 
Thm* lpath(p)
Thm* & ( ||p|| = 0  destination(l) = source(hd(p)) & hd(p) = lnk-inv(l)) | [lpath_cons] |
0 | Thm* P:(T Prop). ( x nil.P(x)) | [l_all_nil] |
0 | Thm* l:IdLnk. destination(lnk-inv(l)) = source(l) | [ldst-inv] |
0 | Thm* l:IdLnk. lnk-inv(lnk-inv(l)) = l IdLnk | [lnk-inv-inv] |
0 | Thm* p: .    p = p | [bnot_bnot_elim] |
1 | Thm* G:(Id  ), to,from:(|G| (IdLnk List)), e:Edge(G), i:|G|.
Thm* bi-graph(G;to;from)  ((e to(i))  destination(e) = i) | [edge-to] |
0 | Thm* T:(Id  ), to,from:(|T| (IdLnk List)), u:Edge(T).
Thm* bi-graph(T;to;from)  destination(u) |T| | [dst-edge] |
2 | Thm* P:(T Prop), x:T, L:T List. ( y [x / L].P(y))  P(x) & ( y L.P(y)) | [l_all_cons] |
0 | Thm* T:(Id  ), to,from:(|T| (IdLnk List)), u:Edge(T).
Thm* bi-graph(T;to;from)  source(u) |T| | [src-edge] |
2 | Thm* G:(Id  ), to,from:(|G| (IdLnk List)), e:Edge(G), i:|G|.
Thm* bi-graph(G;to;from)  ((inverse(e) to(i))  source(e) = i) | [edge-inv-to] |