| Some definitions of interest. |
|
compose | Def (f o g)(x) == f(g(x)) |
| | Thm* A,B,C:Type, f:(BC), g:(AB). f o g AC |
|
increasing | Def increasing(f;k) == i:(k-1). f(i)<f(i+1) |
| | Thm* k:, f:(k). increasing(f;k) Prop |
|
int_seg | Def {i..j} == {k:| i k < j } |
| | Thm* m,n:. {m..n} Type |
|
length | Def ||as|| == Case of as; nil 0 ; a.as' ||as'||+1 (recursive) |
| | Thm* A:Type, l:A List. ||l|| |
| | Thm* ||nil|| |
|
nat | Def == {i:| 0i } |
| | Thm* Type |
|
select | Def l[i] == hd(nth_tl(i;l)) |
| | Thm* A:Type, l:A List, n:. 0n n<||l|| l[n] A |