| Some definitions of interest. |
|
assert | Def b == if b True else False fi |
| | Thm* b: . b Prop |
|
iff | Def P  Q == (P  Q) & (P  Q) |
| | Thm* A,B:Prop. (A  B) Prop |
|
sublist | Def L1 L2
Def == f:( ||L1||  ||L2||).
Def == increasing(f;||L1||) & ( j: ||L1||. L1[j] = L2[(f(j))] T) |
| | Thm* T:Type, L1,L2:T List. L1 L2 Prop |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |
|
null | Def null(as) == Case of as; nil true ; a.as' false |
| | Thm* T:Type, as:T List. null(as)  |
| | Thm* null(nil)  |
|
tl | Def tl(l) == Case of l; nil nil ; h.t t |
| | Thm* A:Type, l:A List. tl(l) A List |