Definitions mb list 1 Sections MarkB generic Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Some definitions of interest.
iffDef P  Q == (P  Q) & (P  Q)
Thm* A,B:Prop. (A  B Prop
sublistDef L1  L2
Def == f:(||L1||||L2||). 
Def == increasing(f;||L1||) & (j:||L1||. L1[j] = L2[(f(j))]  T)
Thm* T:Type, L1,L2:T List. L1  L2  Prop
increasingDef increasing(f;k) == i:(k-1). f(i)<f(i+1)
Thm* k:f:(k). increasing(f;k Prop
int_segDef {i..j} == {k:i  k < j }
Thm* m,n:. {m..n Type
isegDef l1  l2 == l:T List. l2 = (l1 @ l)
Thm* T:Type, l1,l2:T List. l1  l2  Prop
natDef  == {i:| 0i }
Thm*   Type
leDef AB == B<A
Thm* i,j:. (ij Prop
lengthDef ||as|| == Case of as; nil  0 ; a.as'  ||as'||+1  (recursive)
Thm* A:Type, l:A List. ||l||  
Thm* ||nil||  
rev_impliesDef P  Q == Q  P
Thm* A,B:Prop. (A  B Prop
selectDef l[i] == hd(nth_tl(i;l))
Thm* A:Type, l:A List, n:. 0n  n<||l||  l[n A

About:
listnillist_indintnatural_numberadd
subtractless_thansetapplyfunctionrecursive_def_noticeuniverse
equalmemberpropimpliesandallexists!abstraction
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html

Definitions mb list 1 Sections MarkB generic Doc