is mentioned by
Thm* (x,y:T. Dec(P(x,y))) Thm* Thm* (x,y:T. P(x,y) P(y,x)) Thm* Thm* (L':T List. Thm* ((L (swap adjacent[P(x,y)]^*) L') & (i:(||L'||-1). P(L'[i],L'[(i+1)]))) | [partial_sort] |
Thm* (x,y:T. P(x,y) P(y,x)) Thm* Thm* (L':T List. Thm* ((L guarded_permutation(T;L,i. P(L[i],L[(i+1)])) L') Thm* (& (i:(||L'||-1). P(L'[i],L'[(i+1)]))) | [partial_sort_exists_2] |
Thm* y = z x = y (x, y) = compose_list([(x, z); (y, z); (x, z)]) | [flip_lemma] |
Thm* (L:T List, i:(||L||-1). Thm* (P(L,i) P(swap(L;i;i+1),i) & m(swap(L;i;i+1))<m(L)) Thm* Thm* (L:T List. Thm* (L':T List. Thm* ((L guarded_permutation(T;L,i. P(L,i)) L') & (i:(||L'||-1). P(L',i))) | [partial_sort_exists] |
Thm* L2 = swap(L1;i;j) Thm* Thm* L2[i] = L1[j] & L2[j] = L1[i] & ||L2|| = ||L1|| & L1 = swap(L2;i;j) Thm* & (x:||L2||. x = i x = j L2[x] = L1[x]) | [swapped_select] |
Thm* (x:||L||. Dec(P(x))) Thm* Thm* (i:||L||. P(i)) (i:||L||. P(i) & (j:||L||. i<j P(j))) | [last_with_property] |
Thm* (x:||L||. Dec(P(x))) Thm* Thm* (L1,L2:T List, f1:(||L1||||L||), f2:(||L2||||L||). Thm* (interleaving_occurence(T;L1;L2;L;f1;f2) Thm* (& (i:||L1||. P(f1(i))) & (i:||L2||. P(f2(i))) Thm* (& (i:||L||. Thm* (& ((P(i) (j:||L1||. f1(j) = i)) Thm* (& (& (P(i) (j:||L2||. f2(j) = i)))) | [interleaving_split] |
[filter_is_nil] | |
Def == ||L|| = ||L1||+||L2|| Def == & increasing(f1;||L1||) & (j:||L1||. L1[j] = L[(f1(j))] T) Def == & increasing(f2;||L2||) & (j:||L2||. L2[j] = L[(f2(j))] T) Def == & (j1:||L1||, j2:||L2||. f1(j1) = f2(j2) ) | [interleaving_occurence] |
Def == f1:(||L1||||L||), f2:(||L2||||L||). Def == increasing(f1;||L1||) & (j:||L1||. L1[j] = L[(f1(j))] T) Def == & increasing(f2;||L2||) & (j:||L2||. L2[j] = L[(f2(j))] T) Def == & (j1:||L1||, j2:||L2||. f1(j1) = f2(j2)) | [disjoint_sublists] |
[l_disjoint] |
In prior sections: core bool 1 int 2 rel 1 num thy 1 list 1 sqequal 1 mb nat mb list 1
Try larger context:
MarkB generic
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html