Thm* L:T List, P:(T T Prop).
Thm* ( x,y:T. Dec(P(x,y)))
Thm* 
Thm* ( x,y:T. P(x,y)  P(y,x))
Thm* 
Thm* ( L':T List.
Thm* ((L (swap adjacent[ P(x,y)]^*) L') & ( i: (||L'||-1). P(L'[i],L'[(i+1)]))) | [partial_sort] |
Thm* L:T List, P:(T T  ).
Thm* ( x,y:T. P(x,y)  P(y,x))
Thm* 
Thm* ( L':T List.
Thm* ((L guarded_permutation(T; L,i. P(L[i],L[(i+1)])) L')
Thm* (& ( i: (||L'||-1). P(L'[i],L'[(i+1)]))) | [partial_sort_exists_2] |
Thm* k: , x,y,z: k.
Thm* y = z  x = y  (x, y) = compose_list([(x, z); (y, z); (x, z)]) | [flip_lemma] |
Thm* P:(L:(T List)  (||L||-1)  ), m:((T List)  ).
Thm* ( L:T List, i: (||L||-1).
Thm* (P(L,i)  P(swap(L;i;i+1),i) & m(swap(L;i;i+1))<m(L))
Thm* 
Thm* ( L:T List.
Thm* ( L':T List.
Thm* ((L guarded_permutation(T; L,i. P(L,i)) L') & ( i: (||L'||-1). P(L',i))) | [partial_sort_exists] |
Thm* L1,L2:T List, i,j: ||L1||.
Thm* L2 = swap(L1;i;j)
Thm* 
Thm* L2[i] = L1[j] & L2[j] = L1[i] & ||L2|| = ||L1|| & L1 = swap(L2;i;j)
Thm* & ( x: ||L2||. x = i  x = j  L2[x] = L1[x]) | [swapped_select] |
Thm* L:T List, P:( ||L|| Prop).
Thm* ( x: ||L||. Dec(P(x)))
Thm* 
Thm* ( i: ||L||. P(i))  ( i: ||L||. P(i) & ( j: ||L||. i<j  P(j))) | [last_with_property] |
Thm* L:T List, P:( ||L|| Prop).
Thm* ( x: ||L||. Dec(P(x)))
Thm* 
Thm* ( L1,L2:T List, f1:( ||L1||  ||L||), f2:( ||L2||  ||L||).
Thm* (interleaving_occurence(T;L1;L2;L;f1;f2)
Thm* (& ( i: ||L1||. P(f1(i))) & ( i: ||L2||. P(f2(i)))
Thm* (& ( i: ||L||.
Thm* (& ((P(i)  ( j: ||L1||. f1(j) = i))
Thm* (& (& ( P(i)  ( j: ||L2||. f2(j) = i)))) | [interleaving_split] |
Thm* P:(T  ), L:T List. ( x L. P(x))  (filter(P;L) ~ nil) | [filter_is_nil] |
Def interleaving_occurence(T;L1;L2;L;f1;f2)
Def == ||L|| = ||L1||+||L2||
Def == & increasing(f1;||L1||) & ( j: ||L1||. L1[j] = L[(f1(j))] T)
Def == & increasing(f2;||L2||) & ( j: ||L2||. L2[j] = L[(f2(j))] T)
Def == & ( j1: ||L1||, j2: ||L2||. f1(j1) = f2(j2) ) | [interleaving_occurence] |
Def disjoint_sublists(T;L1;L2;L)
Def == f1:( ||L1||  ||L||), f2:( ||L2||  ||L||).
Def == increasing(f1;||L1||) & ( j: ||L1||. L1[j] = L[(f1(j))] T)
Def == & increasing(f2;||L2||) & ( j: ||L2||. L2[j] = L[(f2(j))] T)
Def == & ( j1: ||L1||, j2: ||L2||. f1(j1) = f2(j2)) | [disjoint_sublists] |
Def l_disjoint(T;l1;l2) == x:T. ((x l1) & (x l2)) | [l_disjoint] |