 Q == P+Q
 Q == P+Qis mentioned by
|  P:(A   A   Prop), f:(A    ), L1,L2:A List. Thm* (L1 swap adjacent[P(x,y)] L2) Thm*    Thm* (filter(f;L1) swap adjacent[P(x,y)] filter(f;L2)) Thm*  filter(f;L1) = filter(f;L2) | [filter_swap_adjacent] | 
|  L:T List, i:  (||L||-1), a,b:T. Thm* a before b  swap(L;i;i+1)   a before b  L  a = L[(i+1)] & b = L[i] | [l_before_swap] | 
|  P:(T   Prop), x:T, L:T List. (  y  [x / L].P(y))   P(x)  (  y  L.P(y)) | [l_exists_cons] | 
In prior sections: core bool 1 int 2 rel 1 num thy 1 list 1 sqequal 1 mb nat mb list 1
Try larger context:
 
MarkB  generic
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html