| | Some definitions of interest. |
|
| decidable | Def Dec(P) == P P |
| | | Thm* A:Prop. Dec(A) Prop |
|
| int_seg | Def {i..j } == {k: | i k < j } |
| | | Thm* m,n: . {m..n } Type |
|
| rel_star | Def (R^*)(x,y) == n: . x R^n y |
| | | Thm* T:Type, R:(T T Prop). (R^*) T T Prop |
|
| nat | Def == {i: | 0 i } |
| | | Thm* Type |