| Rank | Theorem | Name |
| 6 | Thm* count(x < y in swap(L;n;n+1) | P(x,y)) Thm* = Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) Thm* count(x < y in L | P(x,y))+if P(L[n],L[(n+1)]) | [count_pairs_swap] |
| cites the following: | ||
| 3 | [swap_length] | |
| 0 | [flip_bijection] | |
| 5 | Thm* Bij( Thm* Thm* Bij( Thm* Thm* sum(f(p(x),q(y)) | x < n; y < m) = sum(f(x,y) | x < n; y < m) | [permute_double_sum] |
| 2 | Thm* sum(f(x,y)-g(x,y) | x < n; y < m) = d Thm* Thm* sum(f(x,y) | x < n; y < m) = sum(g(x,y) | x < n; y < m)+d | [double_sum_difference] |
| 4 | Thm* Thm* Thm* ( Thm* Thm* sum(f(x,y) | x < n; y < m) = f(x1,y1)+f(x2,y2) | [pair_support_double_sum] |
| 1 | Thm* ( Thm* Thm* sum(f(x,y) | x < n; y < m) = sum(g(x,y) | x < n; y < m) | [double_sum_functionality] |
| 4 | [swap_select] | |
| 1 | [flip_twice] |