mb
list
2
Sections
MarkB
generic
Doc
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
Rank
Theorem
Name
2
Thm*
k
:
,
x
,
y
:
k
.
L
:
(
k
-1) List. (
x
,
y
) = compose_flips(
L
)
[flip_adjacent]
cites the following:
1
Thm*
k
:
,
x
,
y
,
z
:
k
.
Thm*
y
=
z
x
=
y
(
x
,
y
) = compose_list([(
x
,
z
); (
y
,
z
); (
x
,
z
)])
[flip_lemma]
1
Thm*
k
:
,
L1
,
L2
:
(
k
-1) List.
Thm*
compose_flips(
L1
) o compose_flips(
L2
) = compose_flips(
L1
@
L2
)
[compose_flips_append]
0
Thm*
k
:
,
i
,
j
:
k
. (
i
,
j
) = (
j
,
i
)
[flip_symmetry]
IF YOU CAN SEE THIS go to /sfa/Nuprl/Shared/Xindentation_hack_doc.html
mb
list
2
Sections
MarkB
generic
Doc