| Some definitions of interest. |
|
decidable | Def Dec(P) == P P |
| | Thm* A:Prop. Dec(A) Prop |
|
fappend | Def f[n:=x](i) == if i= n x else f(i) fi |
| | Thm* n,m: , f:( n  m), x: m. f[n:=x] (n+1)  m |
|
eq_int | Def i= j == if i=j true ; false fi |
| | Thm* i,j: . (i= j)  |
|
increasing | Def increasing(f;k) == i: (k-1). f(i)<f(i+1) |
| | Thm* k: , f:( k  ). increasing(f;k) Prop |
|
int_seg | Def {i..j } == {k: | i k < j } |
| | Thm* m,n: . {m..n } Type |
|
nat | Def == {i: | 0 i } |
| | Thm* Type |
|
not | Def A == A  False |
| | Thm* A:Prop. ( A) Prop |