mb state machine Sections GenAutomata Doc

Def P Q == PQ

is mentioned by

Thm* M:sm{i:l}(), I:(M.state(M.action List)Prop). (x:M.state. M.init(x) I(x,nil)) (s0,x:M.state, act:M.action, x':M.state, l:M.action List. M.init(s0) trace_reachable(M;s0;l;x) I(x,l) M.trans(x,act,x') I(x',l @ [act])) (M |= always s,t.I(s,t))[trace_inv_induction]
Def (M |= x,tr.P(x;tr) while Q(x;tr)) == (M |= x,x',tr,tr'.P(x;tr) Q(x;tr) Q(x';tr') P(x';tr'))[while]
Def (M |= x,x',tr,tr'.R(x;x';tr;tr')) == x,x':M.state, tr:M.action List, a:M.action. (M -tr- > x) M.trans(x,a,x') R(x;x';tr;tr @ [a])[tla]
Def (M |= always s,t.P(s;t)) == t:M.action List, s0,s:M.state. M.init(s0) trace_reachable(M;s0;t;s) P(s;t)[trace_inv]
Def (M |= initially x,tr.P(x;tr)) == x:M.state. M.init(x) P(x;nil)[initially]

In prior sections: core well fnd int 1 bool 1 sqequal 1 fun 1 int 2 list 1 prog 1 rel 1 mb basic mb nat union num thy 1 mb list 1 mb label

Try larger context: GenAutomata

mb state machine Sections GenAutomata Doc