mb state machine Sections GenAutomata Doc

Def t.trans == 2of(2of(2of(t)))

is mentioned by

Thm* M:sm{i:l}(), I:(M.state(M.action List)Prop). (x:M.state. M.init(x) I(x,nil)) (s0,x:M.state, act:M.action, x':M.state, l:M.action List. M.init(s0) trace_reachable(M;s0;l;x) I(x,l) M.trans(x,act,x') I(x',l @ [act])) (M |= always s,t.I(s,t))[trace_inv_induction]
Thm* M:sm{i:l}(), a:M.action, s,s':M.state. trace_reachable(M;s;[a];s') M.trans(s,a,s')[trace_reachable_one]
Def (M |= x,x',tr,tr'.R(x;x';tr;tr')) == x,x':M.state, tr:M.action List, a:M.action. (M -tr- > x) M.trans(x,a,x') R(x;x';tr;tr @ [a])[tla]
Def trace_reachable(M;s;l;s') == Case of l nil s = s' M.state a.l' x:M.state. M.trans(s,a,x) & trace_reachable(M;x;l';s') (recursive)[trace_reachable]
Def (f o M) == mk_sm(M.da o f, M.ds, M.init, s1,a,s2. l:Label. kind(a) = f(l) & M.trans(s1, < l,value(a) > ,s2))[sm_a_rename]
Def i:I M(i) == mk_sm(M(i).da for i I, M(i).ds for i I, s.i:I. M(i).init(s), s1,a,s2. i:I. M(i).trans(s1,a,s2))[sm_all]

Try larger context: GenAutomata

mb state machine Sections GenAutomata Doc