Thm*
L:LangOver(Alph), R:(Alph*![]()
Alph*![]()
Prop).
(EquivRel x,y:Alph*. x R y) ![]()
(
x,y,z:Alph*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:Alph*//(x R y))![]()
![]()
).
(
l:Alph*. L(l) ![]()
g(l)) ![]()
x,y:Alph*//(x L-induced Equiv y) = x,y:Alph*//(x Rg y))
mn_23_Rl_equal_Rg
Thm*
R:(Alph*![]()
Alph*![]()
Prop).
Fin(Alph) ![]()
(EquivRel x,y:Alph*. x R y) ![]()
Fin(x,y:Alph*//(x R y)) ![]()
(
x,y,z:Alph*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:Alph*//(x R y))![]()
![]()
), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
mn_23_lem_1
Thm*
R:(Alph*![]()
Alph*![]()
Prop).
Fin(Alph) ![]()
(EquivRel x,y:Alph*. x R y) ![]()
Fin(x,y:Alph*//(x R y)) ![]()
(
x,y,z:Alph*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:Alph*//(x R y))![]()
![]()
), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
mn_23_lem
Thm*
R:(A*![]()
A*![]()
Prop).
(EquivRel x,y:A*. x R y) ![]()
(
x,y,z:A*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:A*//(x R y))![]()
![]()
), L:LangOver(A).
(
l:A*. L(l) ![]()
g(l)) ![]()
(
x,y:A*. (x L-induced Equiv y) ![]()
(x Rg y)))
Rl_iff_Rg
Thm*
R:(A*![]()
A*![]()
Prop).
(EquivRel x,y:A*. x R y) ![]()
(
x,y,z:A*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:A*//(x R y))![]()
![]()
). EquivRel u,v:x,y:A*//(x R y). u Rg v)
lquo_rel_equi
Thm*
R:(A*![]()
A*![]()
Prop).
(EquivRel x,y:A*. x R y) ![]()
(
x,y,z:A*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:A*//(x R y))![]()
![]()
). Trans u,v:x,y:A*//(x R y). u Rg v)
lquo_rel_tran
Thm*
R:(A*![]()
A*![]()
Prop).
(EquivRel x,y:A*. x R y) ![]()
(
x,y,z:A*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:A*//(x R y))![]()
![]()
). Sym u,v:x,y:A*//(x R y). u Rg v)
lquo_rel_symm
Thm*
R:(A*![]()
A*![]()
Prop).
(EquivRel x,y:A*. x R y) ![]()
(
x,y,z:A*. (x R y) ![]()
((z @ x) R (z @ y))) ![]()
(
g:((x,y:A*//(x R y))![]()
![]()
). Refl(x,y:A*//(x R y);u,v.u Rg v))
lquo_rel_refl