Thm* L:LangOver(Alph), R:(Alph*
Alph*
Prop).
(EquivRel x,y:Alph*. x R y)
(
x,y,z:Alph*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:Alph*//(x R y))
).
(
l:Alph*. L(l)
g(l))
x,y:Alph*//(x L-induced Equiv y) = x,y:Alph*//(x Rg y))
mn_23_Rl_equal_Rg
Thm* R:(Alph*
Alph*
Prop).
Fin(Alph)
(EquivRel x,y:Alph*. x R y)
Fin(x,y:Alph*//(x R y))
(
x,y,z:Alph*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:Alph*//(x R y))
), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
mn_23_lem_1
Thm* R:(Alph*
Alph*
Prop).
Fin(Alph)
(EquivRel x,y:Alph*. x R y)
Fin(x,y:Alph*//(x R y))
(
x,y,z:Alph*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:Alph*//(x R y))
), x,y:x,y:Alph*//(x R y). Dec(x Rg y))
mn_23_lem
Thm* R:(A*
A*
Prop).
(EquivRel x,y:A*. x R y)
(
x,y,z:A*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:A*//(x R y))
), L:LangOver(A).
(
l:A*. L(l)
g(l))
(
x,y:A*. (x L-induced Equiv y)
(x Rg y)))
Rl_iff_Rg
Thm* R:(A*
A*
Prop).
(EquivRel x,y:A*. x R y)
(
x,y,z:A*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:A*//(x R y))
). EquivRel u,v:x,y:A*//(x R y). u Rg v)
lquo_rel_equi
Thm* R:(A*
A*
Prop).
(EquivRel x,y:A*. x R y)
(
x,y,z:A*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:A*//(x R y))
). Trans u,v:x,y:A*//(x R y). u Rg v)
lquo_rel_tran
Thm* R:(A*
A*
Prop).
(EquivRel x,y:A*. x R y)
(
x,y,z:A*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:A*//(x R y))
). Sym u,v:x,y:A*//(x R y). u Rg v)
lquo_rel_symm
Thm* R:(A*
A*
Prop).
(EquivRel x,y:A*. x R y)
(
x,y,z:A*. (x R y)
((z @ x) R (z @ y)))
(
g:((x,y:A*//(x R y))
). Refl(x,y:A*//(x R y);u,v.u Rg v))
lquo_rel_refl