PrintForm Definitions normalization Sections ClassicalProps(jlc) Doc

At: normalization lemma 1 1 1 1 1 1 1

1. hyp: Formula List
2. concl: Formula List
3. fhyp.((f) > 0)
4. M: Formula List
5. N: Formula List
6. f: Formula
7. (f) > 0
8. hyp = (M @ (f.N))
9. S:Sequent. (S) < ( < M @ (f.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= S ) & (a:Assignment. sL.a | s a | S))

L:Sequent List. sL.((s) = 0) & (sL.|= s |= < M @ (f.N),concl > ) & (a:Assignment. sL.a | s a | < M @ (f.N),concl > )

By: FormulaCases -4

Generated subgoals:

17. x: Var
8. (x) > 0
9. hyp = (M @ (x.N))
10. S:Sequent. (S) < ( < M @ (x.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= S ) & (a:Assignment. sL.a | s a | S))
L:Sequent List. sL.((s) = 0) & (sL.|= s |= < M @ (x.N),concl > ) & (a:Assignment. sL.a | s a | < M @ (x.N),concl > )
27. x: Formula
8. (x) > 0
9. hyp = (M @ (x.N))
10. S:Sequent. (S) < ( < M @ (x.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= S ) & (a:Assignment. sL.a | s a | S))
L:Sequent List. sL.((s) = 0) & (sL.|= s |= < M @ (x.N),concl > ) & (a:Assignment. sL.a | s a | < M @ (x.N),concl > )
37. x1: Formula
8. x2: Formula
9. (x1x2) > 0
10. hyp = (M @ (x1x2.N))
11. S:Sequent. (S) < ( < M @ (x1x2.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= S ) & (a:Assignment. sL.a | s a | S))
L:Sequent List. sL.((s) = 0) & (sL.|= s |= < M @ (x1x2.N),concl > ) & (a:Assignment. sL.a | s a | < M @ (x1x2.N),concl > )
47. x1: Formula
8. x2: Formula
9. (x1x2) > 0
10. hyp = (M @ (x1x2.N))
11. S:Sequent. (S) < ( < M @ (x1x2.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= S ) & (a:Assignment. sL.a | s a | S))
L:Sequent List. sL.((s) = 0) & (sL.|= s |= < M @ (x1x2.N),concl > ) & (a:Assignment. sL.a | s a | < M @ (x1x2.N),concl > )
57. y1: Formula
8. y2: Formula
9. (y1y2) > 0
10. hyp = (M @ (y1y2.N))
11. S:Sequent. (S) < ( < M @ (y1y2.N),concl > ) (L:Sequent List. sL.((s) = 0) & (sL.|= s |= S ) & (a:Assignment. sL.a | s a | S))
L:Sequent List. sL.((s) = 0) & (sL.|= s |= < M @ (y1y2.N),concl > ) & (a:Assignment. sL.a | s a | < M @ (y1y2.N),concl > )


About:
existslistandequalintapply
natural_numberimpliespairconsallless_than