Thm* a,b: . CoPrime(a,b) ![](FONT/eq.png) ( x,y: . (a x+b y) ~ 1) | [coprime_bezout_id0] |
Thm* a,b: . CoPrime(a,b) ![](FONT/if_big.png) (gcd(a;b) ~ 1) | [coprime_elim_a] |
Thm* a,b: . CoPrime(a,b) ![](FONT/if_big.png) ( c: . c | a ![](FONT/eq.png) c | b ![](FONT/eq.png) (c ~ 1)) | [coprime_elim] |
Thm* p: . prime(p) ![](FONT/eq.png) p = 0 & (p ~ 1) & ( a: . a | p ![](FONT/eq.png) (a ~ 1) (a ~ p)) | [prime_elim] |
Thm* a:![](FONT/int.png) ![](FONT/minus.png) , b: . a b | a ![](FONT/eq.png) (b ~ 1) | [self_divisor_mul] |
Thm* a: . atomic(a) ![](FONT/if_big.png) (a ~ 1) & ( b: . b | a ![](FONT/eq.png) (b ~ 1) (b ~ a)) | [atomic_char] |
Thm* a,b,c: . gcd(gcd(a;b);c) ~ gcd(a;gcd(b;c)) | [gcd_assoc] |
Thm* a,b,n: . (n gcd(a;b)) ~ gcd(n a;n b) | [gcd_mul] |
Thm* a,b: . gcd(a;b) ~ gcd(b;a) | [gcd_sym] |
Thm* a,b,y1,y2: . GCD(a;b;y1) ![](FONT/eq.png) GCD(a;b;y2) ![](FONT/eq.png) (y1 ~ y2) | [gcd_unique] |
Thm* a,a',b,b',y,y': .
Thm* (a ~ a') ![](FONT/eq.png) (b ~ b') ![](FONT/eq.png) (y ~ y') ![](FONT/eq.png) (GCD(a;b;y) ![](FONT/if_big.png) GCD(a';b';y')) | [gcd_p_functionality_wrt_assoced] |
Thm* a,b: . (a ~ b) ![](FONT/if_big.png) a = b | [assoced_nelim] |
Thm* a: . a | 1 ![](FONT/if_big.png) (a ~ 1) | [unit_chars] |
Thm* a: . |a| ~ a | [absval_assoced] |
Thm* a: . (-a) ~ a | [neg_assoced] |
Thm* a,b: , n:![](FONT/int.png) ![](FONT/minus.png) . ((n a) ~ (n b)) ![](FONT/eq.png) (a ~ b) | [mul_cancel_in_assoced] |
Thm* a,b: . (a ~ b) ![](FONT/if_big.png) a = b a = -b | [assoced_elim] |
Thm* a,b,a',b': . (a ~ a') ![](FONT/eq.png) (b ~ b') ![](FONT/eq.png) ((a ~ b) ![](FONT/if_big.png) (a' ~ b')) | [assoced_functionality_wrt_assoced] |
Thm* a,a',b,b': . (a ~ a') ![](FONT/eq.png) (b ~ b') ![](FONT/eq.png) ((a b) ~ (a' b')) | [multiply_functionality_wrt_assoced] |
Thm* a,b,c: . (a ~ b) ![](FONT/eq.png) (b ~ c) ![](FONT/eq.png) (a ~ c) | [assoced_transitivity] |
Thm* a,b: . a = b ![](FONT/eq.png) (a ~ b) | [assoced_weakening] |
Thm* a,a',b,b': . (a ~ a') ![](FONT/eq.png) (b ~ b') ![](FONT/eq.png) (a | b ![](FONT/if_big.png) a' | b') | [divides_functionality_wrt_assoced] |
Thm* EquivRel x,y: . x ~ y | [assoced_equiv_rel] |
Def prime(a) == a = 0 & (a ~ 1) & ( b,c: . a | b c ![](FONT/eq.png) a | b a | c) | [prime] |
Def atomic(a) == a = 0 & (a ~ 1) & reducible(a) | [atomic] |
Def reducible(a) == b,c:![](FONT/int.png) ![](FONT/minus.png) . (b ~ 1) & (c ~ 1) & a = b c | [reducible] |