Thm* a,b:. CoPrime(a,b) (x,y:. (ax+by) ~ 1) | [coprime_bezout_id0] |
Thm* a,b:. CoPrime(a,b) (gcd(a;b) ~ 1) | [coprime_elim_a] |
Thm* a,b:. CoPrime(a,b) (c:. c | a c | b (c ~ 1)) | [coprime_elim] |
Thm* p:. prime(p) p = 0 & (p ~ 1) & (a:. a | p (a ~ 1) (a ~ p)) | [prime_elim] |
Thm* a:, b:. ab | a (b ~ 1) | [self_divisor_mul] |
Thm* a:. atomic(a) (a ~ 1) & (b:. b | a (b ~ 1) (b ~ a)) | [atomic_char] |
Thm* a,b,c:. gcd(gcd(a;b);c) ~ gcd(a;gcd(b;c)) | [gcd_assoc] |
Thm* a,b,n:. (ngcd(a;b)) ~ gcd(na;nb) | [gcd_mul] |
Thm* a,b:. gcd(a;b) ~ gcd(b;a) | [gcd_sym] |
Thm* a,b,y1,y2:. GCD(a;b;y1) GCD(a;b;y2) (y1 ~ y2) | [gcd_unique] |
Thm* a,a',b,b',y,y':.
Thm* (a ~ a') (b ~ b') (y ~ y') (GCD(a;b;y) GCD(a';b';y')) | [gcd_p_functionality_wrt_assoced] |
Thm* a,b:. (a ~ b) a = b | [assoced_nelim] |
Thm* a:. a | 1 (a ~ 1) | [unit_chars] |
Thm* a:. |a| ~ a | [absval_assoced] |
Thm* a:. (-a) ~ a | [neg_assoced] |
Thm* a,b:, n:. ((na) ~ (nb)) (a ~ b) | [mul_cancel_in_assoced] |
Thm* a,b:. (a ~ b) a = b a = -b | [assoced_elim] |
Thm* a,b,a',b':. (a ~ a') (b ~ b') ((a ~ b) (a' ~ b')) | [assoced_functionality_wrt_assoced] |
Thm* a,a',b,b':. (a ~ a') (b ~ b') ((ab) ~ (a'b')) | [multiply_functionality_wrt_assoced] |
Thm* a,b,c:. (a ~ b) (b ~ c) (a ~ c) | [assoced_transitivity] |
Thm* a,b:. a = b (a ~ b) | [assoced_weakening] |
Thm* a,a',b,b':. (a ~ a') (b ~ b') (a | b a' | b') | [divides_functionality_wrt_assoced] |
Thm* EquivRel x,y:. x ~ y | [assoced_equiv_rel] |
Def prime(a) == a = 0 & (a ~ 1) & (b,c:. a | bc a | b a | c) | [prime] |
Def atomic(a) == a = 0 & (a ~ 1) & reducible(a) | [atomic] |
Def reducible(a) == b,c:. (b ~ 1) & (c ~ 1) & a = bc | [reducible] |