def | divides |
|
THM | zero_divs_only_zero |
|
THM | one_divs_any |
|
THM | any_divs_zero |
|
THM | divides_invar_1 |
|
THM | divides_invar_2 |
|
THM | divisors_bound |
|
THM | only_pm_one_divs_one |
|
THM | divides_of_absvals |
|
THM | divides_reflexivity |
|
THM | divides_transitivity |
|
THM | divides_preorder |
|
THM | divides_anti_sym_n |
|
THM | divides_anti_sym |
|
THM | assoc_reln |
|
THM | divisor_of_sum |
|
THM | divisor_of_minus |
|
THM | divisor_of_mul |
|
THM | divides_mul |
|
THM | divisor_bound |
|
THM | divides_iff_rem_zero |
|
THM | divides_iff_div_exact |
|
THM | decidable__divides |
|
COM | divides_instance_com | The proof here illustrates how the evaluation of the extract of one theorem (decidable__divides) can help to prove another theorem. ... |
THM | divides_instance |
|
COM | gcd_p_com | Should redo this not using uncurried antecedents.Makes forward chaining a lot easier. |
def | assoced |
|
THM | assoced_equiv_rel |
|
THM | divides_functionality_wrt_assoced |
|
THM | assoced_weakening |
|
THM | assoced_transitivity |
|
THM | multiply_functionality_wrt_assoced |
|
THM | assoced_functionality_wrt_assoced |
|
THM | assoced_elim |
|
THM | mul_cancel_in_assoced |
|
THM | neg_assoced |
|
THM | absval_assoced |
|
THM | unit_chars |
|
THM | assoced_nelim |
|
THM | pdivisor_bound |
|
THM | divides_nchar |
|
def | gcd_p |
|
THM | gcd_p_functionality_wrt_assoced |
(a ~ a') (b ~ b') (y ~ y') (GCD(a;b;y) GCD(a';b';y')) |
THM | gcd_p_eq_args |
|
THM | gcd_p_zero |
|
THM | gcd_p_one |
|
THM | gcd_p_zero_rel |
|
THM | gcd_p_sym |
|
THM | gcd_p_sym_a |
|
THM | gcd_p_neg_arg |
|
THM | gcd_p_neg_arg_a |
|
THM | gcd_p_neg_arg_2 |
|
THM | gcd_p_shift |
|
THM | gcd_unique |
|
THM | gcd_of_triple |
GCD(a;b;x) GCD(x;c;y) y | a & y | b & y | c & (z:. z | a z | b z | c z | y) |
def | gcd |
|
THM | gcd_sat_gcd_p |
|
THM | gcd_sat_pred |
|
THM | gcd_elim |
|
THM | gcd_sym |
|
THM | gcd_is_divisor_1 |
|
THM | gcd_is_divisor_2 |
|
THM | gcd_is_gcd |
|
COM | quot_rem_exists_com | The q and r computed by the extracts of these theorems are not the same as those returned by the divides(a;b) and remainder(a;b) built-in arithmetic functions: ... |
THM | quot_rem_exists_n |
|
THM | quot_rem_exists |
|
THM | gcd_exists_n |
|
THM | gcd_ex_n |
|
THM | gcd_exists |
|
THM | bezout_ident_n |
|
THM | bezout_ident |
|
THM | gcd_p_mul |
|
THM | gcd_mul |
|
THM | gcd_assoc |
|
def | coprime |
|
THM | sq_stable__coprime |
|
COM | prime_com | We follow a more abstract characterization of primeness here, defining separately notions of primeness and irreducibility. ... |
def | reducible |
|
def | atomic |
|
COM | atomic_char_com | This theorem was quite tedious to prove. ... |
THM | atomic_char |
|
def | prime |
|
THM | self_divisor_mul |
|
THM | prime_imp_atomic |
|
THM | prime_elim |
|
THM | coprime_intro |
|
THM | coprime_elim |
|
THM | coprime_elim_a |
|
THM | coprime_iff_ndivides |
|
THM | coprime_bezout_id0 |
|
THM | coprime_bezout_id1 |
|
THM | coprime_bezout_id2 |
|
THM | coprime_bezout_id |
|
THM | coprime_prod |
|
THM | coprime_divisors_prod |
|
THM | atomic_imp_prime |
|
THM | prime_divs_prod |
|
def | eqmod |
|
THM | eqmod_weakening |
|
THM | eqmod_transitivity |
|
THM | eqmod_inversion |
|
THM | eqmod_functionality_wrt_eqmod |
m = m' (a = a' mod m) (b = b' mod m) ((a = b mod m) (a' = b' mod m')) |
THM | eqmod_fun |
(a = a' mod m) (b = b' mod m) ((a = b mod m) (a' = b' mod m)) |
THM | add_functionality_wrt_eqmod |
|
THM | multiply_functionality_wrt_eqmod |
|
COM | chrem_com | Here is the existential half of the chinese remainder theorem for pairs of integers. ... |
THM | chrem_exists_aux |
|
THM | chrem_exists_aux_a |
|
THM | chrem_exists |
|
THM | chrem_exists_a |
|
def | fib |
|
THM | fib_coprime |
|